- 1. Distribute the negation signs for each of the following, adjusting other symbols accordingly.
 - (a) $\sim (\forall x, P(x)) \equiv$ Solution: $\sim (\forall x, P(x)) \equiv \exists x, \sim P(x)$
 - (b) $\sim (\exists x, Q(x)) \equiv$ Solution: $\sim (\exists x, Q(x)) \equiv \forall x \sim Q(x)$
 - (c) $\sim (\forall x, \exists y, P(x, y) \lor Q(x, y)) \equiv$ Solution: $\sim (\forall x, \exists y, P(x, y) \lor Q(x, y)) \equiv \exists x, \forall y, (\sim P(x, y) \land \sim Q(x, y))$
 - (d) $\sim (\exists x, \forall y, P(x, y) \land Q(x, y)) \equiv$ Solution: $\sim (\exists x, \forall y, P(x, y) \land Q(x, y)) \equiv \forall x, \exists y, (\sim P(x, y) \lor \sim Q(x, y))$
 - (e) $\sim (\exists x, \forall y, P(x, y) \to Q(x, y)) \equiv$ Solution: $\sim (\exists x, \forall y, P(x, y) \to Q(x, y)) \equiv \forall x, \exists y, (P(x, y) \land \sim Q(x, y))$
- 2. Negate the following sentences, writing the results in full sentences with as few symbols as the original.
 - (a) There is an $x \in \mathbb{R}$ so that for all $y \in \mathbb{Z}$ we have $x = y^2$ **Result:** For every $x \in \mathbb{R}$ there is some $y \in \mathbb{Z}$ with $x \neq y^2$.
 - (b) For every year there is at least one day when it's sunny. **Result:** There is a year for which all days are not sunny.
 - (c) For every week there is at least one day where it rains or snows. Result: There is a week where on every day it doesn't rain and it doesn't snow.
- 3. Each of the following is either trivially or vacuously true or both. Determine which and explain why.
 - (a) Let $x \in \mathbb{R}$. Prove if $x^2 x + 10 = 0$ then $x^3 7 = 0$. **Result:** Vacuously true since $x^2 - x + 10$ never equals 0 for $x \in \mathbb{R}$.
 - (b) Let x ∈ ℝ. Prove if -|x + 1| > 3 then x² ≥ 0.
 Result: Booth vacuously and trivially true. Vacuously true since -|x + 1| is always ≤ 0 and trivially true since x² is always nonnegative.
 - (c) Let $n \in \mathbb{Z}$. Prove if $n^2 > 5$ then $|n+1| \ge 0$. **Result:** Trivially true since for any $n \in \mathbb{Z}$ we have $|n+1| \ge 0$.
- 4. Provide direct proofs of each of the following:
 - (a) If $x \in \mathbb{R}$ and $x^2 + x 12 = 0$ then x = 3 or x = -4. **Proof:** If $x^2 + x - 12 = 0$ then (x + 4)(x - 3) = 0 so then x + 4 = 0 or x - 3 = 0 so x = -4 or x = 3.
 - (b) If n ∈ Z is even then 3n 5 is odd. **Proof:** If n is even then n = 2k for some k ∈ Z. Then 3n-5 = 3(2k)-5 = 6k-5 = 2(3k-3)+1 = 2m + 1 for m = 3k 3 ∈ Z and so 3n 5 is odd.
 - (c) If $n, m \in \mathbb{Z}$ are odd then $mn^2 n + m$ is odd. **Proof:** If n and m are odd then n = 2k + 1 and m = 2l + 1 for $k, l \in \mathbb{Z}$. Then $mn^2 - n + m = (2l+1)(2k+1)^2 - (2k+1) + (2l+1) = 2(4k^2l + 4kl + l + 2k^2 + 2k - k + l) + 1 = 2c + 1$ for $c = 2k^2l + 4kl + l + 2k^2 + 2k - k + l \in \mathbb{Z}$ so $mn^2 - n + m$ is odd.