Numerical Integration of Differential Equations

Methods with uniform step size

We consider methods to numerically integrate the initial value problem

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad y(a)=y_{0} \tag{1}
\end{equation*}
$$

on the interval $a \leq t \leq b$. We divide the interval $[a, b]$ into N subintervals of length $h=(b-a) / N$, and let $t_{n}=a+n h, n=0,1, \ldots, N$. We let $y(t)$ denote the exact solution of the IVP (1). The value of y at the point t_{n} is $y\left(t_{n}\right)$. The values of the numerical solution at the point t_{n} we denote by y_{n}. The error at the nth step is $e_{n}=y\left(t_{n}\right)-y_{n}$.

The Euler Method
The Euler method is the simplest example of an explicit method. In the Euler Method we calculate the values y_{n} by making tangent line approximations:

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) \tag{2}
\end{equation*}
$$

To estimate the error we expand the exact solution $y(t)$ at the point t_{n} :

$$
\begin{aligned}
y(t) & =y\left(t_{n}\right)+y^{\prime}\left(t_{n}\right)\left(t-t_{n}\right)+O\left(\left(t-t_{n}\right)^{2}\right) \\
& =y\left(t_{n}\right)+f\left(t_{n}, y\left(t_{n}\right)\right)\left(t-t_{n}\right)+O\left(\left(t-t_{n}\right)^{2}\right)
\end{aligned}
$$

Putting $t=t_{n+1}=t_{n}+h$, we find

$$
\begin{equation*}
y\left(t_{n}+h\right)=y\left(t_{n}\right)+f\left(t_{n}, y\left(t_{n}\right)\right) h+O\left(h^{2}\right) \tag{3}
\end{equation*}
$$

Now subtract (2) from (3) to find

$$
\begin{align*}
e_{n+1} & =e_{n}+\left[f\left(t_{n}, y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right] h+O\left(h^{2}\right) \\
& =e_{n}\left[1+f_{y}\left(t_{n}, \eta_{n}\right) h\right]+O\left(h^{2}\right) \tag{4}
\end{align*}
$$

where η_{n} is some point in the interval between y_{n} and $y\left(t_{n}\right)$. If $y\left(t_{n}\right)=y_{n}$, so that $e_{n}=0$, then $e_{n+1}=O\left(h^{2}\right)$. This is the local error, or formula error. If we assume that there is a constant $L \geq 0$ such that $\left|f_{y}(t, y)\right| \leq L$, and that $\left|y^{\prime \prime}(t)\right| \leq M$, using (4) we can prove that Euler's method converges in the sense that the cumulative error

$$
\left|y(b)-y_{N}\right| \leq C h .
$$

This means that as $N \rightarrow \infty$, i.e., $h \rightarrow 0$, the value y_{N} converges to $y(b)$. We say that Euler's method has order $p=1$ because the cumulative error tends to zero as the first power of h.

Stability We say that the $\operatorname{ODE}(1)$ is stable if $f_{y} \leq 0$. Intuitively, this means that the solution curves are not spreading apart as t increases. Note that equation may stable for some values of (t, y) and not for other values.

From (4) we see that the factor $\left[1+h f_{y}\right]$ multiplies the error e_{n} This factor is the amplification (magnifcation) factor of the Euler method. If $f_{y}>0$, i.e.,
if the ODE is unstable, the error is amplified. We will say that a method (like Euler's method) is stable if the amplication factor is less than or equal to 1 in absolute value. In the case of Euler's method we require that

$$
\left|1+h f_{y}\right| \leq 1
$$

The interval of stability for Euler's method is

$$
-2 \leq h f_{y} \leq 0
$$

Thus for Euler's method to be stable we must have

$$
h \leq \frac{2}{\left|f_{y}\right|}
$$

Backward Euler Method

The backward Euler method is an implicit method. It is given by

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right) \tag{5}
\end{equation*}
$$

The value y_{n+1} is defined implicitly by the equation (5). It must be determined at each step by some numerical method of solving equations. To estimate the error e_{n+1} in terms of e_{n}, we expand the exact solution of (1) at the point t_{n+1} :

$$
\begin{aligned}
y(t) & =y\left(t_{n+1}\right)+y^{\prime}\left(t_{n+1}\right)\left(t-t_{n+1}\right)+O\left(\left(t-t_{n+1}\right)^{2}\right) \\
& =y\left(t_{n+1}\right)+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\left(t-t_{n+1}\right)+O\left(\left(t-t_{n+1}\right)^{2}\right)
\end{aligned}
$$

Now set $t=t_{n}=t_{n+1}-h$, to deduce

$$
y\left(t_{n}\right)=y\left(t_{n+1}\right)-h f\left(t_{n+1}, y\left(t_{n+1}\right)\right)+O\left(h^{2}\right)
$$

whence

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+h f\left(t_{n+1}, y\left(t_{n+1}\right)\right)+O\left(h^{2}\right) \tag{6}
\end{equation*}
$$

Now subtract (5) from (6) to find

$$
\begin{aligned}
e_{n+1} & =e_{n}+h\left[f\left(t_{n+1}, y\left(t_{n+1}\right)\right)-f\left(t_{n+1}, y_{n+1}\right)\right]+O\left(h^{2}\right) \\
& =e_{n}+h f_{y}\left(t_{n+1}, \eta_{n}\right) e_{n+1}+O\left(h^{2}\right)
\end{aligned}
$$

When we solve for e_{n+1} we find

$$
\begin{equation*}
e_{n+1}=\left(\frac{1}{1-h f_{y}}\right) e_{n}+O\left(h^{2}\right) \tag{7}
\end{equation*}
$$

It follows that if the equation is stable, i.e., $f_{y} \leq 0$, the the amplification factor $0 \leq 1 /\left(1-h f_{y}\right) \leq 1$. Thus the backward Euler method is stable whenever the ODE is stable.

The explicit trapezoid method

This method is motivated by the trapezoid approximation to the integral

$$
\begin{aligned}
y(t+h) & =y(t)+\int_{t}^{t+h} f(s, y(s)) d s \\
& \approx y(t)+(h / 2)[f(t, y(t))+f(t+h, y(t+h))]
\end{aligned}
$$

The explicit trapezoid method is a two stage procedure: In the first stage we take the slope to be that of the Euler method,

$$
s_{1}=f\left(t_{n}, y_{n}\right)
$$

and in the second stage we take the slope to be

$$
s_{2}=f\left(t_{n+1}, y_{n}+h s_{1}\right)
$$

For our formula we use an average of these values:

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(s_{1}+s_{2}\right) \tag{8}
\end{equation*}
$$

To derive an estimate of the error e_{n+1} in terms of the error e_{n}, we expand the exact solution $y(t)$ at $t=t_{n}$ up to second order:

$$
\begin{equation*}
y(t)=y\left(t_{n}\right)+y^{\prime}\left(t_{n}\right)\left(t-t_{n}\right)+\frac{1}{2} y^{\prime \prime}\left(t_{n}\right)\left(t-t_{n}\right)^{2}+O\left(\left(t-t_{n}\right)^{3}\right) \tag{9}
\end{equation*}
$$

Now we use the fact that for the exact solution of (1), $y^{\prime}=f(t, y(t))$, and

$$
y^{\prime \prime}(t)=f_{t}(t, y(t))+f_{y}(t, y(t)) f(t, y(t))
$$

Substituting this into equation (9) with $t=t_{n+1}=t_{n}+h$, we obtain

$$
\begin{align*}
y\left(t_{n+1}\right) & =y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right) \\
& +\frac{h^{2}}{2}\left[f_{t}\left(t_{n}, y\left(t_{n}\right)\right)+f_{y}\left(t_{n}, y\left(t_{n}\right)\right) f\left(t_{n}, y\left(t_{n}\right)\right)\right]+O\left(h^{3}\right) \tag{10}
\end{align*}
$$

To compare this formula with (9), we must expand s_{2} about t_{n} :

$$
\begin{aligned}
s_{2} & =f\left(t_{n}, y_{n}\right)+h\left[f_{t}\left(t_{n}, y_{n}\right)+f_{y}\left(t_{n}, y_{n}\right) h s_{1}\right]+O\left(h^{2}\right) \\
& =f\left(t_{n}, y_{n}\right)+h f_{t}\left(t_{n}, y_{n}\right)+h f_{y}\left(t_{n}, y_{n}\right) f\left(t_{n}, y_{n}\right)+O\left(h^{2}\right)
\end{aligned}
$$

Putting this expression into (9) we arrive at

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)+\frac{h^{2}}{2}\left[f_{t}\left(t_{n}, y_{n}\right)+f_{y}\left(t_{n}, y_{n}\right) f\left(t_{n}, y_{n}\right)\right]+O\left(h^{3}\right) \tag{11}
\end{equation*}
$$

Let $g(t, y)=f_{t}(t, y(t))+f_{y}(t, y(t)) f(t, y(t))$. We subtract (11) from (10) to find

$$
\begin{aligned}
e_{n+1} & =e_{n}+h\left[f\left(t_{n}, y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right] \\
& +\frac{h^{2}}{2}\left[g\left(t_{n}, y_{n}\right)-g\left(t, y_{n}\right)\right]+O\left(h^{3}\right)
\end{aligned}
$$

Applying the mean value theorem in the y variable to both f and g, we find that

$$
\begin{equation*}
e_{n+1}=e_{n}\left[1+h f_{y}\left(t_{n}, \xi_{n}\right)+\frac{h^{2}}{2} g_{y}\left(t_{n}, \eta_{n}\right)\right]+O\left(h^{3}\right) \tag{12}
\end{equation*}
$$

It follows that the local error is on the order of h^{3}. The method converges and the cumulative error tends to zero as h^{2}. The explicit trapezoid method has order $p=2$. The amplification factor of the error is

$$
1+h f_{y}+\frac{h^{2}}{2} g_{y}
$$

Since this expression is usually too difficult to use, we concentrate on the case that $f(t, y)=a$ where a is a constant. Then the amplification factor becomes

$$
1+a h+\frac{(a h)^{2}}{2}
$$

from which it can be seen that the explicit trapezoid method is stable when

$$
-2 \leq a h+\frac{(a h)^{2}}{2} \leq 0
$$

Since the ODE is stable only when $a \leq 0$, we see that in the case that $f(t, y)=$ $a y$, the explicit trapezoid method is stable for $h \leq 2 /|a|$.

