Numerical Integration of Differential Equations

Methods with uniform step size
We consider methods to numerically integrate the initial value problem

y = f(t,y), y(a) =yo (1)

on the interval a < t < b. We divide the interval [a, ] into N subintervals of
length h = (b — a)/N, and let t,, = a+nh,n=0,1,...,N. We let y(t) denote
the exact solution of the IVP (1). The value of y at the point ¢, is y(¢,). The
values of the numerical solution at the point ¢,, we denote by y,. The error at
the nth step is e, = y(t,) — Yn.

The Euler Method
The Euler method is the simplest example of an explicit method. In the Euler
Method we calculate the values y,, by making tangent line approximations:

Yn+1 = Yn + hf(t'm yn) (2)

To estimate the error we expand the exact solution y(¢) at the point ¢,:

y(t) = y(tn) +y/(tn)(t*tn)‘FO((t*tn)z)
= y(tn) + f(tn,y(tn))(t —tn) + O((t — tn)Q)'

Putting t = t,,41 = t, + h, we find

Y(tn + h) = y(tn) + ftn, y(ta))h + O(h?). (3)

Now subtract (2) from (3) to find

ent1 = ep+ [f(tna y(tn)) - f(tnayn)]h + O(h’Q)
= en[]- + fy(tn,nn)h] + O(h‘z) (4)

where 7, is some point in the interval between y,, and y(¢,). If y(t,) = Yn, so
that e, = 0, then e, = O(h2). This is the local error, or formula error. If
we assume that there is a constant L > 0 such that |f,(¢,y)| < L, and that
ly”(t)] < M, using (4) we can prove that Euler’s method converges in the sense
that the cumulative error

ly(b) —yn| < Ch.

This means that as N — oo, i.e., h — 0, the value yy converges to y(b) . We
say that Euler’s method has order p = 1 because the cumulative error tends to
zero as the first power of h.

Stability We say that the ODE (1) is stable if f, < 0. Intuitively, this
means that the solution curves are not spreading apart as ¢ increases. Note that
equation may stable for some values of (¢,y) and not for other values.

From (4) we see that the factor [1 + hf,] multiplies the error e,, This factor
is the amplification (magnifcation) factor of the Euler method. If f, > 0, i.e.,



if the ODE is unstable, the error is amplified. We will say that a method (like
Euler’s method) is stable if the amplication factor is less than or equal to 1 in
absolute value. In the case of Euler’s method we require that

14hf, <1,
The interval of stability for Euler’s method is
—2<hf, <0.

Thus for Euler’s method to be stable we must have

hgi'.

| fy

Backward Euler Method
The backward Euler method is an implicit method. It is given by

Ynt+1 = Yn + hf(tn-i-la yn-i-l)' (5)

The value y,,+1 is defined implicitly by the equation (5). It must be determined
at each step by some numerical method of solving equations. To estimate the
error e, 11 in terms of e,, we expand the exact solution of (1) at the point ¢,1:

y(t) = yltng) + ¥ (tng1)(E = tngr) + O((t — tng1)?)
= Y(tns1) + f(tns1, Y(tng1))(t = tni1) + O((t — tn+1)2)~

Now set t = t,, = tp+1 — h, to deduce

y(tn) = y(tn+1) - h’f<tn+17 y(tn-l-l)) + O(h2)a

whence
Y(tns1) = y(tn) + hf (tns1, y(tnsr)) + O(R?). (6)
Now subtract (5) from (6) to find

ent1 = en+ h[f(tnr1,y(tns1)) = f(tnt1s Yns1)] + O(R?)
= en+hfy(tnt1,Mn)ent1 + O(hQ)’

When we solve for e, 1 we find

enit = (l—lhfy>e" o). (7)

It follows that if the equation is stable, i.e., f, <0, the the amplification factor
0<1/(1—hfy) <1. Thus the backward Euler method is stable whenever the
ODE is stable.



The explicit trapezoid method
This method is motivated by the trapezoid approximation to the integral

t+h
y(t+h) = mw+A' F(s,y(s))ds
~ y(t)+ (h/2)[f(t,yt)) + f(t+ h,y(t + h))].

The explicit trapezoid method is a two stage procedure: In the first stage we
take the slope to be that of the Euler method,

51 = f(tnayn)

and in the second stage we take the slope to be

So = f(tnt1,Yn + hs1).

For our formula we use an average of these values:

h
Yn+1 = Yn + 5(81 + s92). (8)

To derive an estimate of the error e, in terms of the error e,,, we expand the
exact solution y(t) at ¢t = ¢, up to second order:

y(t) = y(tn) + y/(tn)(t —tn) + %y//(tn)(t - tn)2 +O((t - tn>3)- (9)

Now we use the fact that for the exact solution of (1), ¥’ = f(¢,y(t)), and
y'(t) = felt,y(0) + £y (£, y () f (£, (1)
Substituting this into equation (9) with ¢t = ¢,41 = t,, + h, we obtain
Y(tng1) = y(tn) + hf(tn, y(tn))

£ Ut (0)) + £yt (1) (s (1)) + O). - (10)

To compare this formula with (9), we must expand s, about t,:

S2 = f(tnayn) + h[ft(tnayn) + fy(tn7yn)h81] + O(hQ)
= f(tn,yn) + Bfe(tn,yn) + Bfy(tn, yn) f(tn, yn) + O(R?).

Putting this expression into (9) we arrive at

2
Ynt+1 = Yn + hf(tmyn) + %[ft(tmyn) + fy(tna yn)f(tnv yn)] + O(hg)' (11)

Let g(t,y) = fi(t,y(®)) + fy (£, y(t)) f(t,y(t)). We subtract (11) from (10) to find

€ntl = €np+ h[f(tn7y(tﬂ)) - f(tnﬂ yn)]
+ %[g(tn7yn) - g(tvyn)] + O(h’g)



Applying the mean value theorem in the y variable to both f and g, we find

that
2

2
It follows that the local error is on the order of A3. The method converges and

the cumulative error tends to zero as h%. The explicit trapezoid method has
order p = 2. The amplification factor of the error is

En+1 = en[l + hfy(tnafn) + gy(tna nn)] + O(hg) (12>

h2

Since this expression is usually too difficult to use, we concentrate on the case
that f(t,y) = a where a is a constant. Then the amplification factor becomes

2
1+ ah 4 9N

from which it can be seen that the explicit trapezoid method is stable when

(ah)?
2

—2<ah+ <0.

Since the ODE is stable only when a < 0, we see that in the case that f(¢,y) =
ay, the explicit trapezoid method is stable for h < 2/|al.



