Numerical Integration of Differential Equations

Methods with uniform step size

We consider methods to numerically integrate the initial value problem

$$y' = f(t, y),$$
 $y(a) = y_0$ (1)

on the interval $a \leq t \leq b$. We divide the interval [a, b] into N subintervals of length h = (b - a)/N, and let $t_n = a + nh$, n = 0, 1, ..., N. We let y(t) denote the exact solution of the IVP (1). The value of y at the point t_n is $y(t_n)$. The values of the numerical solution at the point t_n we denote by y_n . The error at the nth step is $e_n = y(t_n) - y_n$.

The Euler Method

The Euler method is the simplest example of an *explicit* method. In the Euler Method we calculate the values y_n by making tangent line approximations:

$$y_{n+1} = y_n + hf(t_n, y_n).$$
(2)

To estimate the error we expand the exact solution y(t) at the point t_n :

$$y(t) = y(t_n) + y'(t_n)(t - t_n) + O((t - t_n)^2)$$

= $y(t_n) + f(t_n, y(t_n))(t - t_n) + O((t - t_n)^2).$

Putting $t = t_{n+1} = t_n + h$, we find

$$y(t_n + h) = y(t_n) + f(t_n, y(t_n))h + O(h^2).$$
(3)

Now subtract (2) from (3) to find

$$e_{n+1} = e_n + [f(t_n, y(t_n)) - f(t_n, y_n)]h + O(h^2)$$

= $e_n [1 + f_y(t_n, \eta_n)h] + O(h^2)$ (4)

where η_n is some point in the interval between y_n and $y(t_n)$. If $y(t_n) = y_n$, so that $e_n = 0$, then $e_{n+1} = O(h^2)$. This is the local error, or formula error. If we assume that there is a constant $L \ge 0$ such that $|f_y(t, y)| \le L$, and that $|y''(t)| \le M$, using (4) we can prove that Euler's method converges in the sense that the cumulative error

$$|y(b) - y_N| \le Ch.$$

This means that as $N \to \infty$, i.e., $h \to 0$, the value y_N converges to y(b). We say that Euler's method has order p = 1 because the cumulative error tends to zero as the first power of h.

Stability We say that the ODE (1) is stable if $f_y \leq 0$. Intuitively, this means that the solution curves are not spreading apart as t increases. Note that equation may stable for some values of (t, y) and not for other values.

From (4) we see that the factor $[1 + hf_y]$ multiplies the error e_n This factor is the amplification (magnification) factor of the Euler method. If $f_y > 0$, i.e., if the ODE is unstable, the error is amplified. We will say that a *method* (like Euler's method) is *stable* if the amplication factor is less than or equal to 1 in absolute value. In the case of Euler's method we require that

$$|1 + hf_y| \le 1$$

The interval of stability for Euler's method is

$$-2 \le h f_y \le 0.$$

Thus for Euler's method to be stable we must have

$$h \le \frac{2}{|f_y|}.$$

Backward Euler Method

The backward Euler method is an *implicit* method. It is given by

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}).$$
(5)

The value y_{n+1} is defined implicitly by the equation (5). It must be determined at each step by some numerical method of solving equations. To estimate the error e_{n+1} in terms of e_n , we expand the exact solution of (1) at the point t_{n+1} :

$$y(t) = y(t_{n+1}) + y'(t_{n+1})(t - t_{n+1}) + O((t - t_{n+1})^2)$$

= $y(t_{n+1}) + f(t_{n+1}, y(t_{n+1}))(t - t_{n+1}) + O((t - t_{n+1})^2).$

Now set $t = t_n = t_{n+1} - h$, to deduce

$$y(t_n) = y(t_{n+1}) - hf(t_{n+1}, y(t_{n+1})) + O(h^2),$$

whence

$$y(t_{n+1}) = y(t_n) + hf(t_{n+1}, y(t_{n+1})) + O(h^2).$$
(6)

Now subtract (5) from (6) to find

$$e_{n+1} = e_n + h[f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y_{n+1})] + O(h^2)$$

= $e_n + hf_y(t_{n+1}, \eta_n)e_{n+1} + O(h^2).$

When we solve for e_{n+1} we find

$$e_{n+1} = \left(\frac{1}{1 - hf_y}\right)e_n + O(h^2).$$
 (7)

It follows that if the equation is stable, i.e., $f_y \leq 0$, the the amplification factor $0 \leq 1/(1 - hf_y) \leq 1$. Thus the backward Euler method is stable whenever the ODE is stable.

The explicit trapezoid method

This method is motivated by the trapezoid approximation to the integral

$$y(t+h) = y(t) + \int_{t}^{t+h} f(s, y(s))ds$$

$$\approx y(t) + (h/2)[f(t, y(t)) + f(t+h, y(t+h))].$$

The explicit trapezoid method is a two stage procedure: In the first stage we take the slope to be that of the Euler method,

$$s_1 = f(t_n, y_n)$$

and in the second stage we take the slope to be

$$s_2 = f(t_{n+1}, y_n + hs_1)$$

For our formula we use an average of these values:

$$y_{n+1} = y_n + \frac{h}{2}(s_1 + s_2).$$
(8)

To derive an estimate of the error e_{n+1} in terms of the error e_n , we expand the exact solution y(t) at $t = t_n$ up to second order:

$$y(t) = y(t_n) + y'(t_n)(t - t_n) + \frac{1}{2}y''(t_n)(t - t_n)^2 + O((t - t_n)^3).$$
(9)

Now we use the fact that for the exact solution of (1), y' = f(t, y(t)), and

$$y''(t) = f_t(t, y(t)) + f_y(t, y(t))f(t, y(t)).$$

Substituting this into equation (9) with $t = t_{n+1} = t_n + h$, we obtain

$$y(t_{n+1}) = y(t_n) + hf(t_n, y(t_n)) + \frac{h^2}{2} [f_t(t_n, y(t_n)) + f_y(t_n, y(t_n))f(t_n, y(t_n))] + O(h^3).$$
(10)

To compare this formula with (9), we must expand s_2 about t_n :

$$s_2 = f(t_n, y_n) + h[f_t(t_n, y_n) + f_y(t_n, y_n)hs_1] + O(h^2)$$

= $f(t_n, y_n) + hf_t(t_n, y_n) + hf_y(t_n, y_n)f(t_n, y_n) + O(h^2)$

Putting this expression into (9) we arrive at

$$y_{n+1} = y_n + hf(t_n, y_n) + \frac{h^2}{2} [f_t(t_n, y_n) + f_y(t_n, y_n)f(t_n, y_n)] + O(h^3).$$
(11)

Let $g(t, y) = f_t(t, y(t)) + f_y(t, y(t))f(t, y(t))$. We subtract (11) from (10) to find

$$e_{n+1} = e_n + h[f(t_n, y(t_n)) - f(t_n, y_n)] \\ + \frac{h^2}{2}[g(t_n, y_n) - g(t, y_n)] + O(h^3).$$

Applying the mean value theorem in the y variable to both f and g, we find that

$$e_{n+1} = e_n [1 + h f_y(t_n, \xi_n) + \frac{h^2}{2} g_y(t_n, \eta_n)] + O(h^3).$$
(12)

It follows that the local error is on the order of h^3 . The method converges and the cumulative error tends to zero as h^2 . The explicit trapezoid method has order p = 2. The amplification factor of the error is

$$1 + hf_y + \frac{h^2}{2}g_y.$$

Since this expression is usually too difficult to use, we concentrate on the case that f(t, y) = a where a is a constant. Then the amplification factor becomes

$$1 + ah + \frac{(ah)^2}{2}$$

from which it can be seen that the explicit trapezoid method is stable when

$$-2 \le ah + \frac{(ah)^2}{2} \le 0.$$

Since the ODE is stable only when $a \leq 0$, we see that in the case that f(t, y) = ay, the explicit trapezoid method is stable for $h \leq 2/|a|$.