
Numerical Integration of Differential Equations

Methods with uniform step size

We consider methods to numerically integrate the initial value problem

y′ = f(t, y), y(a) = y0 (1)

on the interval a ≤ t ≤ b. We divide the interval [a, b] into N subintervals of
length h = (b − a)/N , and let tn = a + nh, n = 0, 1, . . . , N . We let y(t) denote
the exact solution of the IVP (1). The value of y at the point tn is y(tn). The
values of the numerical solution at the point tn we denote by yn. The error at
the nth step is en = y(tn) − yn.

The Euler Method

The Euler method is the simplest example of an explicit method. In the Euler
Method we calculate the values yn by making tangent line approximations:

yn+1 = yn + hf(tn, yn). (2)

To estimate the error we expand the exact solution y(t) at the point tn:

y(t) = y(tn) + y′(tn)(t − tn) + O((t − tn)2)

= y(tn) + f(tn, y(tn))(t − tn) + O((t − tn)2).

Putting t = tn+1 = tn + h, we find

y(tn + h) = y(tn) + f(tn, y(tn))h + O(h2). (3)

Now subtract (2) from (3) to find

en+1 = en + [f(tn, y(tn)) − f(tn, yn)]h + O(h2)

= en[1 + fy(tn, ηn)h] + O(h2) (4)

where ηn is some point in the interval between yn and y(tn). If y(tn) = yn, so
that en = 0, then en+1 = O(h2). This is the local error, or formula error. If
we assume that there is a constant L ≥ 0 such that |fy(t, y)| ≤ L, and that
|y′′(t)| ≤ M , using (4) we can prove that Euler’s method converges in the sense
that the cumulative error

|y(b) − yN | ≤ Ch.

This means that as N → ∞, i.e., h → 0, the value yN converges to y(b) . We
say that Euler’s method has order p = 1 because the cumulative error tends to
zero as the first power of h.

Stability We say that the ODE (1) is stable if fy ≤ 0. Intuitively, this
means that the solution curves are not spreading apart as t increases. Note that
equation may stable for some values of (t, y) and not for other values.

From (4) we see that the factor [1 + hfy] multiplies the error en This factor
is the amplification (magnifcation) factor of the Euler method. If fy > 0, i.e.,
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if the ODE is unstable, the error is amplified. We will say that a method (like
Euler’s method) is stable if the amplication factor is less than or equal to 1 in
absolute value. In the case of Euler’s method we require that

|1 + hfy| ≤ 1.

The interval of stability for Euler’s method is

−2 ≤ hfy ≤ 0.

Thus for Euler’s method to be stable we must have

h ≤
2

|fy|
.

Backward Euler Method

The backward Euler method is an implicit method. It is given by

yn+1 = yn + hf(tn+1, yn+1). (5)

The value yn+1 is defined implicitly by the equation (5). It must be determined
at each step by some numerical method of solving equations. To estimate the
error en+1 in terms of en, we expand the exact solution of (1) at the point tn+1:

y(t) = y(tn+1) + y′(tn+1)(t − tn+1) + O((t − tn+1)
2)

= y(tn+1) + f(tn+1, y(tn+1))(t − tn+1) + O((t − tn+1)
2).

Now set t = tn = tn+1 − h, to deduce

y(tn) = y(tn+1) − hf(tn+1, y(tn+1)) + O(h2),

whence
y(tn+1) = y(tn) + hf(tn+1, y(tn+1)) + O(h2). (6)

Now subtract (5) from (6) to find

en+1 = en + h[f(tn+1, y(tn+1)) − f(tn+1, yn+1)] + O(h2)

= en + hfy(tn+1, ηn)en+1 + O(h2).

When we solve for en+1 we find

en+1 =

(

1

1 − hfy

)

en + O(h2). (7)

It follows that if the equation is stable, i.e., fy ≤ 0, the the amplification factor
0 ≤ 1/(1 − hfy) ≤ 1 . Thus the backward Euler method is stable whenever the
ODE is stable.
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The explicit trapezoid method

This method is motivated by the trapezoid approximation to the integral

y(t + h) = y(t) +

∫ t+h

t

f(s, y(s))ds

≈ y(t) + (h/2)[f(t, y(t)) + f(t + h, y(t + h))].

The explicit trapezoid method is a two stage procedure: In the first stage we
take the slope to be that of the Euler method,

s1 = f(tn, yn)

and in the second stage we take the slope to be

s2 = f(tn+1, yn + hs1).

For our formula we use an average of these values:

yn+1 = yn +
h

2
(s1 + s2). (8)

To derive an estimate of the error en+1 in terms of the error en, we expand the
exact solution y(t) at t = tn up to second order:

y(t) = y(tn) + y′(tn)(t − tn) +
1

2
y′′(tn)(t − tn)2 + O((t − tn)3). (9)

Now we use the fact that for the exact solution of (1), y′ = f(t, y(t)), and

y′′(t) = ft(t, y(t)) + fy(t, y(t))f(t, y(t)).

Substituting this into equation (9) with t = tn+1 = tn + h, we obtain

y(tn+1) = y(tn) + hf(tn, y(tn))

+
h2

2
[ft(tn, y(tn)) + fy(tn, y(tn))f(tn, y(tn))] + O(h3). (10)

To compare this formula with (9), we must expand s2 about tn:

s2 = f(tn, yn) + h[ft(tn, yn) + fy(tn, yn)hs1] + O(h2)

= f(tn, yn) + hft(tn, yn) + hfy(tn, yn)f(tn, yn) + O(h2).

Putting this expression into (9) we arrive at

yn+1 = yn + hf(tn, yn) +
h2

2
[ft(tn, yn) + fy(tn, yn)f(tn, yn)] + O(h3). (11)

Let g(t, y) = ft(t, y(t))+fy(t, y(t))f(t, y(t)). We subtract (11) from (10) to find

en+1 = en + h[f(tn, y(tn)) − f(tn, yn)]

+
h2

2
[g(tn, yn) − g(t, yn)] + O(h3).
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Applying the mean value theorem in the y variable to both f and g, we find
that

en+1 = en[1 + hfy(tn, ξn) +
h2

2
gy(tn, ηn)] + O(h3). (12)

It follows that the local error is on the order of h3. The method converges and
the cumulative error tends to zero as h2. The explicit trapezoid method has
order p = 2. The amplification factor of the error is

1 + hfy +
h2

2
gy.

Since this expression is usually too difficult to use, we concentrate on the case
that f(t, y) = a where a is a constant. Then the amplification factor becomes

1 + ah +
(ah)2

2

from which it can be seen that the explicit trapezoid method is stable when

−2 ≤ ah +
(ah)2

2
≤ 0.

Since the ODE is stable only when a ≤ 0, we see that in the case that f(t, y) =
ay, the explicit trapezoid method is stable for h ≤ 2/|a|.
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