Simple Quadrature Rules

Single Panel Midpoint Rule

$$
\int_{a}^{b} f(x) d x=(b-a) f\left(\frac{a+b}{2}\right)+E_{M}(f)
$$

where

$$
E_{M}(f)=\frac{(b-a)^{3}}{24} f^{\prime \prime}(\xi)
$$

for some ξ in the interval $[a, b]$.
Composite Midpoint Rule. Let $h=(b-a) / n$, and $x_{j}=a+j * h, j=$ $0, \ldots, n$ and let $s_{j}=(1 / 2)\left(x_{j-1}+x_{j}\right), j=1, \ldots, n$ be the midpoint of each subinterval. Then

$$
\int_{a}^{b} f(x) d x=h\left[f(s 1)+f(s 2)+\cdots+f\left(s_{n}\right)\right]+E_{M}(f, h)
$$

where

$$
E_{M}(f, h)=\frac{h^{2}(b-a)}{24} f^{\prime \prime}(\eta)
$$

for some η in the interval $[a, b]$.

Single Panel Trapezoid Rule

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}(f(a)+f(b))+E_{T}(f)
$$

where

$$
E_{T}(f)=-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi)
$$

for some ξ in the interval $[a, b]$.

Composite Trapezoid Rule

$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]+E_{T}(f, h)$
where

$$
E_{T}(f, h)=-\frac{h^{2}(b-a)}{12} f^{\prime \prime}(\eta)
$$

for some η in the interval $[a, b]$.

Single Panel Simpson Rule

$$
\int_{a}^{b} f(x) d x=\frac{h}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]+E_{S}(f)
$$

where

$$
E_{S}(f)=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi)
$$

for some ξ in $[a, b]$.
Composite Simpson Rule Assume n is even. Then

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]+E_{S}(f, h)
$$

where

$$
E_{S}(f, h)=-\frac{(b-a) h^{4}}{180} f^{(4)}(\eta)
$$

for some η in $[a, b]$.
Simpson's rule is related to the trapezoid rule and the midpoint rule by the equation

$$
S(f)=\frac{2}{3} M(f)+\frac{1}{3} T(f)
$$

The midpoint rule and the trapezoid rule are both exact on polynomials of degree ≤ 1, but not exact on x^{2}. Hence the midpoint rule and trapezoid rule and both of order 2. Simpson's rule is exact is exact on polynomials of degree ≤ 3, but not on x^{4}. Hence Simpson's rule is of order 4 .

Estimates of the error. Use $T_{n}(f)$ to denote $T(f, h)$ where $h=(b-a) / n$. From the form of the error for T_{n}, assuming $f^{\prime \prime}$ changes slowly, we can deduce that

$$
\left|E_{T}(f, n)\right| \approx \frac{4}{3}\left|T_{n}(f)-T_{2 n}(f)\right|
$$

Note that we can write

$$
T_{2 n}(f)=\frac{1}{2} T_{n}\left((f)+\frac{h}{2}\left[f\left(s_{1}\right)+\cdots+f\left(s_{n}\right)\right.\right.
$$

where s_{j} is the midpoint of the $n^{t h}$ subinterval.
For Simpson's rule we can deduce that

$$
\left|E_{S}(f, n)\right| \approx \frac{16}{15}\left|S_{n}(f)-S_{2 n}(f)\right|
$$

We can get a new rule of higher order by forming an average of $S(f, n)$ and $S(f, 2 n)$. In fact,

$$
Q(f)=\frac{16 S(f, 2 n)-S(f, n)}{15}
$$

has order 6. It is a five point Newton Cotes rule.

Gaussian Quadrature

We begin with a three point rule on $[-1,1]$. Let

$$
Q(g)=A_{1} g\left(t_{1}\right)+A_{2} g\left(t_{2}\right)+A_{3} g\left(t_{3}\right)
$$

We want to choose the weights A_{1}, A_{2}, A_{3} and the nodes t_{1}, t_{2}, t_{3} so as to maximize the order of Q. To economize in the derivation, we shall assume some symmmetry: We take $t_{1}=-t_{3}$ and $t_{2}=0$, and $A_{1}=A_{3}$. Thus our rule becomes

$$
Q(g)=A_{1} g\left(-t_{3}\right)+A_{2} g(0)+A_{1} g\left(t_{3}\right)
$$

With this symmetry, we have that for any power t^{p} with p odd, $Q\left(t^{p}\right)=0=$ $\int_{-1}^{1} t^{p} d t$. Thus we shall determine A_{1}, A_{2} and t_{3} by requiring that Q be exact on the even powers $g(t) \equiv 1, g(t)=t^{2}$ and $g(t)=t^{4}$. This yields the equations

$$
Q(1)=A_{1}+A_{2}+A_{1}=\int_{-1}^{1} 1 d t=2
$$

or

$$
\begin{gather*}
2 A_{1}+A_{2}=2 \tag{1}\\
Q\left(t^{2}\right)=A_{1} t_{3}^{2}+A_{1} t_{3}^{2}=\int_{-1}^{1} t^{2} d t=2 / 3
\end{gather*}
$$

or

$$
\begin{equation*}
A_{1} t_{3}^{2}=1 / 3 . \tag{2}
\end{equation*}
$$

Finally we require that

$$
Q\left(t^{4}\right)=A_{1} t_{3}^{4}+A_{1} t_{3}^{4}=\int_{-1}^{1} t^{4} d t=2 / 5
$$

or

$$
\begin{equation*}
A_{1} t_{3}^{4}=1 / 5 \tag{3}
\end{equation*}
$$

Dividing equation (3) by equation (2), we find $t_{3}^{2}=3 / 5$, whence $t_{3}=\sqrt{3 / 5}$. Substitution of this value of t_{3} into (2) yields $A_{1}=5 / 9$, and finally (1) yields $A_{2}=8 / 9$. Hence our three-point Gaussian quadrature rule is

$$
G_{3}(g)=\frac{5}{9} g(-\sqrt{3 / 5})+\frac{8}{9} g(0)+\frac{5}{9} g(\sqrt{3 / 5}) .
$$

It has order 6 because it integrates exactly $g(t)=1, t, t^{2}, t^{3}, t^{4}$ and t^{5}, but not $g(t)=t^{6}$. Use the map $\varphi(t)=a+\frac{(b-a)}{2}(t+1)$ to make the change of variable from $[-1,1]$ to $[a, b]$. If f given on $[a, b]$, set $g(t)=f(\varphi(t))$. Then

$$
G_{3}(f)=G_{3}(g)=\frac{(b-a)}{2}\left[\frac { 5 } { 9 } f \left(\varphi(-\sqrt{3 / 5})+\frac{8}{9} f(\varphi(0))+\frac{5}{9} f(\varphi(\sqrt{3 / 5})]\right.\right.
$$

and the error is

$$
E_{3}(f)=\left[\frac{(b-a)}{2}\right]^{7} \frac{1}{15750} f^{(6)}(\eta)
$$

There are Gaussian quadrature rules of all orders. If there are n weights and n nodes to be chosen, there are $2 n$ degrees of freedom, and we can choose them so that G_{n} integrates all polynomials of degree $\leq 2 n-1$, but not of degree $2 n$. Hence G_{n} is order $p=2 n$. The nodes of G_{n} are the zeros of the Legendre polynomial θ_{n} of degree n. The weights and nodes for Gaussian quadrature can easily be found on the web.

Lobatto quadrature

Lobatto quadrature using 4 points is a rule similiar to Gaussian quadrature but which uses the end points of the interval. On the interval $[-1,1]$, the rule is

$$
L_{4}(g)=A_{1} g(-1)+A_{2} g\left(-t_{1}\right)+A_{2}\left(t_{1}\right)+A_{1} g(1)
$$

Because of symmetry, L_{4} is already exact on all odd powers t^{p}. We impose the conditions that L_{4} be exact on the polynomials $1, t^{2}$ and t^{4}. This yields the equations

$$
\begin{gathered}
A_{1}+A_{2}=1 \\
A_{1}+A_{1} t_{1}^{2}=\frac{1}{3}
\end{gathered}
$$

and

$$
A_{1}+A_{2} t_{1}^{4}=\frac{1}{5}
$$

The solutions for A_{1}, A_{2} and t_{1} yield the Lobatto rule

$$
L_{4}(g)=\frac{1}{6} g(-1)+\frac{5}{6} g(-\sqrt{1 / 5})+\frac{5}{6} g(\sqrt{1 / 5})+\frac{1}{6} g(1)
$$

The Lobatto rule L_{4} has order $p=6$. There are Lobatto rules of all orders. The interior nodes $t_{i}, i=1, \ldots, n-2$ are the zeros of the derivatives θ_{n}^{\prime} of the Legendre polynomials θ_{n}.

