
AMSC/CMSC 460
Problem set 2

1. Consider the linear system Ax = b where A is the matrix

A =







6 2 2
2 2/3 1/3
1 2 −1







and b = (−2, 1, 0).
a) Verify that the exact solution is x1 = 2.6, x2 = −3.8, x3 = −5.0.
b) Using four digit floating-point decimal arithmetic with rounding, solve

this system by Gaussian elimination without pivoting. In performing the
arithmetic operations, remember to round to four digits after each operation.
In particular, use this rounding when entering the elements of the matrix,
and in computing the multipliers. Call the computed solution y.

c) Repeat part b) using partial pivoting. Call the computed solution z.
Compare the solutions y and z with the exact solution x.

2. The n × n Hilbert matrix is

Hn = [hi,j] where hi,j =
1

i + j − 1
, 1 ≤ i, j ≤ n.

This matrix is nonsingular and the inverse may be computed explicitly, The
inverse H−1

n = aij where

aij =
(−1)i+j(n + i − 1)!(n + j − 1)!

(i + j − 1)[(i − 1)!(j − 1)!]2(n − i)!(n − j)!
.

The MATLAB functions hilb(n) and invhilb(n) give Hn and H−1
n respec-

tively, using the formulas. If we set bn = (1, 0, . . . , 0), then the exact solution
xn of Hnxn = bn is the first column of H−1

n .
(a) Using the MATLAB back slash command, solve for xn for the cases

n = 5 and n = 10. Call this computed result yn.
(b) Let en = xn−yn where xn is the exact solution as given by the formula

above and let rn = bn −Hnyn be the residual. Find the condition number of
Hn in the 2-norm using the MATLAB command cond for n = 5 and n = 10.
Verify that

1



‖en‖

‖xn‖
≤ cond(Hn)u

where u = eps/2 is the unit roundoff, and ‖ ‖ is the 2-norm. The MATLAB
command norm(v) computes the 2-norm of a vector v.

(c) How many accurate digits are there in the computed solutions in each
case?

(d) Verify in each case that

‖rn‖

‖Hn‖‖yn‖
≤ u.

3. a) Use the MATLAB command chol to find the Cholesky factorization
of the matrix

A =











1 0 1 0
0 .25 −.5 1.5
1 −.5 18 1
0 1.5 1 110











.
b) Let R be the upper triangular matrix found in part a) such that A =

RT R. Compare cond(R) and cond(A). Which is smaller?
c) Let B be a random 10 × 10 matrix, produced with the command B =

rand(10,10). Let A = BT B. Let R be the upper triangular matrix such that
A = RT R obtained from the Cholesky factorization, R = chol(A). Compare
the condition numbers of A and R.

4. Problem 2.3, page 82 of Moler.

5. Consider the problem of finding a solution of the boundary value problem
for given f(x)

−u′′(x) = f(x) for 0 < x < 1 (1)

u(0) = u(1) = 0.

The solution u can be found analytically in the form of an integral, but
we shall use a finite difference approximation to calculate some numerical
solutions of this problem.
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First we approximate the second derivative with a difference quotient:

u′′(x) ≈
u(x + ∆x)) − 2u(x) + u(x − ∆x)

(∆x)2

so that the DE becomes

−
u(x + ∆x) − 2u(x) + u(x − ∆x)

(∆x)2
≈ f(x).

Now introduce grid points in the interval [0, 1]. Let the number of subin-
tervals be n, setting ∆x = 1/n and xj = j∆x, j = 0, . . . , n. We let uj be
the approximate value we wish to compute for u(xj). The uj are chosen to
satisfy the system of linear equations

−uj+1 + 2uj − uj−1 = (∆x)2f(xj), j = 1, . . . , J

where J = n − 1 is the number of interior mesh points. The boundary
conditions say that u0 = uJ+1 = 0 so we get the J × J system

Tu = (∆x)−2Su = f

where S is the the J × J tridiagonal matrix

S =



























2 −1 0 . . . 0
−1 2 −1 . . . 0

0 −1 2 . . . 0
. . . . . . 0
. . . . . . 0
. . . . . 2 −1
0 0 . . . −1 2



























u = (u1, . . . , uJ) and f = (f(x1), . . . , f(xJ)).

Write a short MATLAB program (script mfile) to solve this system with
the given function f as input. You can write f as in inline function. The
program should have n as an input parameter and should plot the solution
u along with the function f on the interval [0, 1]. The program should be
written to accomodate values of n as large as 200 (J = 199). Remember that
in MATLAB an index in a vector always starts with one.
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We shall take advantage of the fact that S is a sparse matrix to save on
storage space. You will need to enter the matrix S as a sparse matrix using
the sparse commands of MATLAB. Enter help sparse at the MATLAB
prompt to get information.

Note that S can be written S = E +D +E ′ where D = 2I and E has −1
on the super diagonal and zeros elsewhere. D and E can each be entered as
sparse matrices.

You can use the MATLAB command u = T\f to solve the sytem. You
can also use the sequence of commands

[L,U] = lu(T)

v = L\f;

u = U\v;

For this size problem, the LU factorization does not save much time.
a) For starters take f(x) = 1. The exact solution is u(x) = x(1 − x)/2.

Note that the values of u at the points xj satisfy the difference equation
exactly. You can use this solution to see if your program is working correctly.

b) Now use the function f(x) = sin(πx) with exact solution u(x) =
sin(πx)/π2. Run your program with values of n = 10, 50, 100, 200. To see
convergence of the numerical solutions to the exact solution, plot the numer-
ical solutions for these values of n together on the same graph using the hold
on command.

c) For each n of part c) compute the error en = max |uj − sin(πxj)/π
2|.

According to what power of ∆x = 1/n is en tending to zero as n increases?

d) Now try a function f which is continuous but not C1, such as

f(x) =

{

x/a, 0 ≤ x ≤ a
(1 − x)/(1 − a), a ≤ x ≤ 1

.

How does the solution curve compare with f? Is it smoother, or does it have
the same jump in the derivative at x = a? Again try n = 20, 50, 100, 200 and
observe the convergence of the computed solutions.
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