AMSC 460/CMSC 460 Computational Methods

Problem Set 6

1. Consider the intial value problem

$$
y^{\prime}=-12(t-1) y, \quad y(0)=e^{-6}
$$

on the interval $[0,5]$.
(a) Write a MATLAB program to compute approximate solutions using Euler's Method, Backward Euler Method, and Trapezoid Method with step sizes $h=0.1,0.05$, and 0.025 . Because the equation is linear, you can solve for y_{n+1} in the Backward Euler method to get an explicit formula.
(b) For each method calculate the error amplification factor (as a function of t and of h). Discuss the stability of the equation and the stability of each method, indicating the dependence on t and h.
(c) Compare the exact solution $y(t)=\exp \left(-6(t-1)^{2}\right)$ with the computed solutions. Explain the oscillations produced by Euler's Method as well as the negative values produced by the Backward Euler Method for $h=0.1$, and why they disappear for the smaller values of h.
(d) Finally, use the MATLAB code ode45 on this problem on the interval $[0,2]$. The call is $[t, y]=\operatorname{ode45}(\mathrm{f},[0,2], y 0)$. Here the function $f(t, y)=-12(t-1) y$ should be given in an inline function

$$
\mathrm{f}=\operatorname{inline}\left({ }^{\prime}-12^{*}(\mathrm{t}-1) \cdot{ }^{*} \mathrm{y}\right. \text { ', 't', 'y'). }
$$

y_{0} is the initial value, in this case $y_{0}=e^{-6}$. Compare the error at $t=2$ for each of the computed solutions with $h=.025$ (80 steps), with the error for ode45 at $t=2$. How many steps does ode45 use?
2. Problem 7.6 in the Moler text, page 221.
3. Problem 7.15 in the Moler text, page 223. For part c) use initial data $\left(r_{0}, f_{0}\right)=(90,180)$. Try several pairs of initial data with $f_{0}=2 r_{0}$, and r_{0} approaching 100 . What is happening to the periods?
4. We shall use the shooting method to solve the nonlinear boundary value problem

$$
w^{\prime \prime}(x)=w^{2}(x)-1, \quad w(0)=w(1)=0 .
$$

The idea here is to solve the initial value problem with initial conditions $w(0)=0$ and $w^{\prime}(0)=\alpha$, and let α vary. In this way we define a function $\alpha \rightarrow g(\alpha) \equiv w(1, \alpha)$, and we seek that value $\alpha=\alpha_{*}$ such that $g(\alpha *)=0$.

We will use fzero on the function g. The function mfile for g must have the parameter α as input, and the value of $w(1, \alpha)$ as the output. Here w will be computed using ode45. You must also make an mfile wdot.m for the righthand side of the differential equation, written as a system. Plot the function $w\left(x, \alpha_{*}\right)$.

To get a starting bracket $\left[\alpha_{1}, \alpha_{2}\right]$ for fzero, run the mfile $\mathrm{g} . \mathrm{m}$ and plot the results for several values of α.

