
SPLINES

A cubic spline is a function defined piecewise with each piece being a cubic
polynomial. Let the break points (knots) be x1 < x2 < . . . < xn, and let
y1, y2, . . . , yn be the data values at these points. We set

δk =
yk+1 − yk

xk+1 − xk

.

There are n − 1 subintervals xk ≤ x ≤ xk+1 and a cubic polynomial Pk(x)
defined on each subinterval. Using s = x− xk, and h = xk+1 − xk, we write the
polynomials in the form

Pk(x) = Pk(s) =
3hs2 − 2s3

h3
yk+1 +

h3 − hs2 + 2s3

h3
yk (1)

+
s2(s − h)

h2
dk+1 +

s(s − h)2

h2
dk.

With the polynomials written this way, it is easy to verify that Pk(xk) =
Pk(s = 0) = yk, and Pk(xk+1) = Pk(s = h) = yk+1. Thus P = ∪Pk interpolates
the data points (xk, yk). The piecewise defined function P = ∪Pk also has a
continuous derivative. In fact you can verify that P ′

k
(xk) = P ′

k
(s = 0) = dk,

and P ′

k
(xk+1) = P ′

k
(s = h) = dk+1.

We still have the n constants d1, . . . , dn to determine. If we knew a function
f(x) such that f(xk) = yk, we could just set dk = f ′(xk). Another approach is
to determine the values for the dk using the values of the divided differences δk.
This is the method used in constructing the Shape-Preserving Piecewise Cubic,
described in Moler, p100 and in the MATLAB code pchip.m.

In a spline, we impose other conditions on P at the knots to determine the dk.
We shall require that P ′′ be continuous at the interior knots xk, k = 2, . . . , n−1:

P ′

k
(x+

k
) = P ′′

k−1(x
−

k
), k = 2, . . . , n − 1.

This yields the equations for the dk (k = 2, . . . , n − 1):

hkdk−1 + 2(hk−1 + hk)dk + hk−1dk+1 = 3(hkδk−1 + hk−1δk). (2)

We now have n − 2 equations for the n unknowns dk. To make a system
that has a unique solution for the dk, we must add two equations to the n − 2
equations (2) or remove two unknowns. This can be done in several ways by
imposing extra conditions at the ends.

Complete Spline We assign values to d1 and dn using other outside in-
formation. For example, we can interpolate a parabola r(x) through the data
points (x1, y1), (x2, y2), (x3, y3), and take d1 = r′(x1). Do the same thing at the
other end. Since d1 and dn are considered known, we can put them to the other
side of equation in the first equation (k = 2) of (2) and in the last equation (k =

1



n-1) of (2). This yields the n− 2×n− 2 system Td = r with d = (d2, . . . , dn−1)
and the n − 2 × n − 2 matrix T is

T =









2(h2 + h1) h1

h3 2(h3 + h2) h2

hn−1 2(hn−2 + hn−1)









(3)

and

r =













3(h1δ2 + h2δ1) − d1h2

3(h2δ3 + h3δ2)
·

·

3(hn−2δn−1 + hn−1δn−2) − dnhn−2













.

Natural Spline We set P ′′

1 (x1) = 0 and P ′′

n−1(xn) = 0. This yields the
two additional equations

2d1 + d2 = 3δ1 and dn−1 + 2dn = 3δn−1.

Combining these two equations with the equations (2), we have the matrix
equation Sd = r where d = (d1, . . . , dn),

r = 3





















δ1

h1δ2 + h2δ1

h2δ3 + h3δ2

·

·

hn−2δn−1 + hn−1δn−2

δn−1





















.

and the n × n matrix S

S =

















2 1
h2 2(h2 + h1) h1

h3 2(h3 + h2) h2

hn−1 2(hn−2 + hn−1) hn−2

1 2

















(4)

Not a Knot Spline In this type of spline, we obtain two additional condi-
tions by requiring P ′′′ to be continuous at x2 and at xn−1. This is equivalent to
using a single cubic to interpolate the data at x1, x2 and x3, and a single cubic
to interpolate the data at xn−2, xn−1 and xn.

If we calculate three derivatives of P from formula (1), we see that on the
kth subinterval, P ′′′

k
is the constant

P ′′′

k
(s) ≡

−12δk + 6(dk+1 + dk)

h2
k

. (5)

2



To make P ′′′ continuous at x1, we equate these expressions for k = 1 and k = 2.
This yields the equation

h2
2(d1 + d2 − 2δ1) = h2

1(d2 + d3 − 2δ2),

or
h2

2d1 + (h2
2 − h2

1)d2 − h2
1d3 = 2h2

2δ1 + 2h2
1δ2. (6)

From (2) with k = 2, we have

h1d3 = 3(δ1h2 + δ2h1) − h2d1 − 2(h1 + h2)d2.

We substitute this expression in (6) to eliminate d3, and we obtain, after dividing
by h1 + h2,

h2d1 + (h1 + h2)d2 = r1 =
(2h2

2 + 3h1h2)δ1 + 5h2
1δ2

h1 + h2

.

We make a similar calculation to make P ′′′ continuous at xn−1. The resulting
n × n system of equations for d = (d1, . . . , dn) is Ad = r where A is the n × n

matrix

A =

















h2 h1 + h2

h2 2(h2 + h1) h1

h3 2(h3 + h2) h2

hn−1 2(hn−2 + hn−1) hn−2

hn−1 + hn−2 hn−2

















, (7)

and

r =





















r1

3(h1δ2 + h2δ1)
3(h2δ3 + h3δ2)

·

·

3(hn−2δn−1 + hn−1δn−2)
rn





















.

The code spline.m of MATLAB uses the not a knot spline.
Note that in three kinds described here, the matrix is tridiagonal, and can

the system can be solved very quickly.

3


