SPLINES

A cubic spline is a function defined piecewise with each piece being a cubic polynomial. Let the break points (knots) be $x_{1}<x_{2}<\ldots<x_{n}$, and let $y_{1}, y_{2}, \ldots, y_{n}$ be the data values at these points. We set

$$
\delta_{k}=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}} .
$$

There are $n-1$ subintervals $x_{k} \leq x \leq x_{k+1}$ and a cubic polynomial $P_{k}(x)$ defined on each subinterval. Using $s=x-x_{k}$, and $h=x_{k+1}-x_{k}$, we write the polynomials in the form

$$
\begin{gather*}
P_{k}(x)=P_{k}(s)=\frac{3 h s^{2}-2 s^{3}}{h^{3}} y_{k+1}+\frac{h^{3}-h s^{2}+2 s^{3}}{h^{3}} y_{k} \tag{1}\\
+\frac{s^{2}(s-h)}{h^{2}} d_{k+1}+\frac{s(s-h)^{2}}{h^{2}} d_{k}
\end{gather*}
$$

With the polynomials written this way, it is easy to verify that $P_{k}\left(x_{k}\right)=$ $P_{k}(s=0)=y_{k}$, and $P_{k}\left(x_{k+1}\right)=P_{k}(s=h)=y_{k+1}$. Thus $P=\cup P_{k}$ interpolates the data points $\left(x_{k}, y_{k}\right)$. The piecewise defined function $P=\cup P_{k}$ also has a continuous derivative. In fact you can verify that $P_{k}^{\prime}\left(x_{k}\right)=P_{k}^{\prime}(s=0)=d_{k}$, and $P_{k}^{\prime}\left(x_{k+1}\right)=P_{k}^{\prime}(s=h)=d_{k+1}$.

We still have the n constants d_{1}, \ldots, d_{n} to determine. If we knew a function $f(x)$ such that $f\left(x_{k}\right)=y_{k}$, we could just set $d_{k}=f^{\prime}\left(x_{k}\right)$. Another approach is to determine the values for the d_{k} using the values of the divided differences δ_{k}. This is the method used in constructing the Shape-Preserving Piecewise Cubic, described in Moler, p100 and in the MATLAB code pchip.m.

In a spline, we impose other conditions on P at the knots to determine the d_{k}. We shall require that $P^{\prime \prime}$ be continuous at the interior knots $x_{k}, k=2, \ldots, n-1$:

$$
P_{k}^{\prime}\left(x_{k}^{+}\right)=P_{k-1}^{\prime \prime}\left(x_{k}^{-}\right), \quad k=2, \ldots, n-1
$$

This yields the equations for the $d_{k}(k=2, \ldots, n-1)$:

$$
\begin{equation*}
h_{k} d_{k-1}+2\left(h_{k-1}+h_{k}\right) d_{k}+h_{k-1} d_{k+1}=3\left(h_{k} \delta_{k-1}+h_{k-1} \delta_{k}\right) \tag{2}
\end{equation*}
$$

We now have $n-2$ equations for the n unknowns d_{k}. To make a system that has a unique solution for the d_{k}, we must add two equations to the $n-2$ equations (2) or remove two unknowns. This can be done in several ways by imposing extra conditions at the ends.

Complete Spline We assign values to d_{1} and d_{n} using other outside information. For example, we can interpolate a parabola $r(x)$ through the data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, and take $d_{1}=r^{\prime}\left(x_{1}\right)$. Do the same thing at the other end. Since d_{1} and d_{n} are considered known, we can put them to the other side of equation in the first equation $(\mathrm{k}=2)$ of (2) and in the last equation $(\mathrm{k}=$
$\mathrm{n}-1)$ of (2). This yields the $n-2 \times n-2$ system $T d=r$ with $d=\left(d_{2}, \ldots, d_{n-1}\right)$ and the $n-2 \times n-2$ matrix T is

$$
T=\left[\begin{array}{ccccc}
2\left(h_{2}+h_{1}\right) & h_{1} & & & \tag{3}\\
h_{3} & 2\left(h_{3}+h_{2}\right) & h_{2} & & \\
& & & & \\
& & & h_{n-1} & 2\left(h_{n-2}+h_{n-1}\right)
\end{array}\right]
$$

and

$$
r=\left[\begin{array}{c}
3\left(h_{1} \delta_{2}+h_{2} \delta_{1}\right)-d_{1} h_{2} \\
3\left(h_{2} \delta_{3}+h_{3} \delta_{2}\right) \\
\cdot \\
\cdot \\
3\left(h_{n-2} \delta_{n-1}+h_{n-1} \delta_{n-2}\right)-d_{n} h_{n-2}
\end{array}\right]
$$

Natural Spline We set $P_{1}^{\prime \prime}\left(x_{1}\right)=0$ and $P_{n-1}^{\prime \prime}\left(x_{n}\right)=0$. This yields the two additional equations

$$
2 d_{1}+d_{2}=3 \delta_{1} \quad \text { and } d_{n-1}+2 d_{n}=3 \delta_{n-1}
$$

Combining these two equations with the equations (2), we have the matrix equation $S d=r$ where $d=\left(d_{1}, \ldots, d_{n}\right)$,

$$
r=3\left[\begin{array}{c}
\delta_{1} \\
h_{1} \delta_{2}+h_{2} \delta_{1} \\
h_{2} \delta_{3}+h_{3} \delta_{2} \\
\cdot \\
\cdot \\
h_{n-2} \delta_{n-1}+h_{n-1} \delta_{n-2} \\
\delta_{n-1}
\end{array}\right] .
$$

and the $n \times n$ matrix S

$$
S=\left[\begin{array}{cccccc}
2 & 1 & & & & \tag{4}\\
h_{2} & 2\left(h_{2}+h_{1}\right) & h_{1} & & & \\
& h_{3} & 2\left(h_{3}+h_{2}\right) & h_{2} & & \\
& & & & & \\
& & & h_{n-1} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-2} \\
& & & & 1 & 2
\end{array}\right]
$$

Not a Knot Spline In this type of spline, we obtain two additional conditions by requiring $P^{\prime \prime \prime}$ to be continuous at x_{2} and at x_{n-1}. This is equivalent to using a single cubic to interpolate the data at x_{1}, x_{2} and x_{3}, and a single cubic to interpolate the data at x_{n-2}, x_{n-1} and x_{n}.

If we calculate three derivatives of P from formula (1), we see that on the $k^{t h}$ subinterval, $P_{k}^{\prime \prime \prime}$ is the constant

$$
\begin{equation*}
P_{k}^{\prime \prime \prime}(s) \equiv \frac{-12 \delta_{k}+6\left(d_{k+1}+d_{k}\right)}{h_{k}^{2}} \tag{5}
\end{equation*}
$$

To make $P^{\prime \prime \prime}$ continuous at x_{1}, we equate these expressions for $k=1$ and $k=2$. This yields the equation

$$
h_{2}^{2}\left(d_{1}+d_{2}-2 \delta_{1}\right)=h_{1}^{2}\left(d_{2}+d_{3}-2 \delta_{2}\right)
$$

or

$$
\begin{equation*}
h_{2}^{2} d_{1}+\left(h_{2}^{2}-h_{1}^{2}\right) d_{2}-h_{1}^{2} d_{3}=2 h_{2}^{2} \delta_{1}+2 h_{1}^{2} \delta_{2} \tag{6}
\end{equation*}
$$

From (2) with $k=2$, we have

$$
h_{1} d_{3}=3\left(\delta_{1} h_{2}+\delta_{2} h_{1}\right)-h_{2} d_{1}-2\left(h_{1}+h_{2}\right) d_{2} .
$$

We substitute this expression in (6) to eliminate d_{3}, and we obtain, after dividing by $h_{1}+h_{2}$,

$$
h_{2} d_{1}+\left(h_{1}+h_{2}\right) d_{2}=r_{1}=\frac{\left(2 h_{2}^{2}+3 h_{1} h_{2}\right) \delta_{1}+5 h_{1}^{2} \delta_{2}}{h_{1}+h_{2}}
$$

We make a similar calculation to make $P^{\prime \prime \prime}$ continuous at x_{n-1}. The resulting $n \times n$ system of equations for $d=\left(d_{1}, \ldots, d_{n}\right)$ is $A d=r$ where A is the $n \times n$ matrix

$$
A=\left[\begin{array}{cccccc}
h_{2} & h_{1}+h_{2} & & & \tag{7}\\
h_{2} & 2\left(h_{2}+h_{1}\right) & h_{1} & & & \\
& h_{3} & 2\left(h_{3}+h_{2}\right) & h_{2} & \\
& & & & \\
& & & h_{n-1} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-2} \\
& & & & h_{n-1}+h_{n-2} & h_{n-2}
\end{array}\right]
$$

and

$$
r=\left[\begin{array}{c}
r_{1} \\
3\left(h_{1} \delta_{2}+h_{2} \delta_{1}\right) \\
3\left(h_{2} \delta_{3}+h_{3} \delta_{2}\right) \\
\cdot \\
\cdot \\
3\left(h_{n-2} \delta_{n-1}+h_{n-1} \delta_{n-2}\right) \\
r_{n}
\end{array}\right]
$$

The code spline.m of MATLAB uses the not a knot spline.
Note that in three kinds described here, the matrix is tridiagonal, and can the system can be solved very quickly.

