MATH 241
MATLAB Problem Set 3

This problem set is based on material in chapters 9 and 10 in the MATLAB Companion. You will need to download the MATLAB Mfile simp2.m from the web. It is contained in the Mfiles for the MATLAB Companion. The web address is www.math.umd.edu/~jec.

How to use simp2. First write an inline function for $f(x, y)$ and then pick a rectangle $R=[a, b] \times[b, c]$ over which you want to integrate R. Set corners $=$ [a,b, c, d]. Then the call for simp2 is simp2(f, corners). After you make the call, the program pauses to let you enter the number n of subdivisions in the x direction and the number m of subdivisions in the y direction. Here is an example.

```
    f = inline(' exp( x + cos(y.^2))', 'x', 'y')
    corners = [1,2, 3,4]
    I1 = simp2(f,corners)
    enter the number of subdivisions . . .
Approximate value of the integral using Simpson's rule
I1 = 5 . 4490
```

Make a short Mfile for each problem that contains all the commands that you used. Use the command diary and the command type to print out the Mfile. See the end of Chapter 2 of the MATLAB Companion. It is on my webpage. For each problem, hand in the diary file.

1. Let R be the rectangle $\{0 \leq x \leq 2,1 \leq y \leq 4\}$.
a) Let $f(x, y)=x \cos \left(x^{2}+y\right)$. Calculate the integral $\iint_{R} f d A$ by hand to get the exact value. Call this value I_{0}.
b) Use the Mfile simp2 to estimate the integral with $[n, m]=[40,60]$. Call the result I_{1}. Then estimate it again with $[n, m]=[80,120]$ and call the result I_{2}. How well does the difference $\left|I_{1}-I_{2}\right|$ approximate the actual error $I_{1}-I_{0}$?
2. Find the volume of the region that is the intersection of the solid cylinder $\left\{(x-1)^{2}+y^{2} \leq 1 / 4\right\}$ with the ball $\left\{x^{2}+y^{2}+z^{2} \leq 4\right\}$. First make a change of variable $\tilde{x}=x-1$ to move the cylinder so that its axis of symmetry is the z axis. Then put the integral into polar coordinates. Finally, use simp2 to estimate the integral with an error on the order of 10^{-6}.
3. Find the area of the surface $z=\exp \left(-x^{2}-y^{2}\right)$ over the triangle $G=\{0 \leq$ $x \leq 1,0 \leq y \leq x\}$.
a) Express the surface area as a double integral over G,

$$
\text { surface area }=\iint_{G} f(x, y) d A(x, y)
$$

for an appropriate function $f(x, y)$.
b) Make a change of variable $(u, v) \rightarrow(x(u, v), y(u, v))$ that maps the rectangle $R=\{0 \leq u \leq 1,0 \leq v \leq 1\}$ onto G. Then using the change of variable for integrals, the integral in part a) becomes

$$
\iint_{R} f(x(u, v), y(u, v))|J(u, v)| d u d v
$$

c) Estimate the double integral over R with an error on the order of 10^{-4} or less using simp2.
4. Let C be the helix parameterized by $\mathbf{r}(t)=(\cos t, \sin t, \log (1+t)), 0 \leq t \leq 2 \pi$. Suppose that C is a wire composed of a material with linear density $\rho(x, y, z)=$ $\exp \left(x^{2}-y^{2}-z\right)$.
a) Write an integral expression for the mass of the wire C.
b) Make a numerical estimate of the integral using the MATLAB integrator quadl. To see how to use this code, enter help quadl.

