
MATH 401 Applications of Linear Algebra

Matlab Problem Set 1

Problems

1. Let A be the matrix

A =











1 −1 2 3
4 5 −2 0
2 4 −2 1
4 2 −5 1











.

a) Use the MATLAB command [L,U,P] = lu(A) to get the factorization
PA = LU . Verify that indeed P*A = L*U.

b) Now let B = PA. Try the command [L,U,P] = lu(B). Why is P = I

?

2. In this exercise we see the speed gained by using the LU factorization.
For a given vector x1 we want to find the vectors xk defined by the recursive
relation

Axk+1 = xk, k = 1, . . . , 49.

We shall do this in a Mfile as follows:

% create a random 100 x 100 matrices with

entries between 0 and 1

A = rand(100,100);

% create a column vector of all ones.

x1 = ones(100,1);

x = x1;

tic

for k = 1:49

x = A\x;

end

toc

% displays the time elapsed to compute

the 49 iterates.

% this is x_50

x
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Now extend this Mfile by writing the command that factors A, PA = LU ,
and then write a loop that solves the equations

Ly = Pxk Uxk+1 = y, k = 1, . . . , 49.

Put a command tic before the factorization command, and put a toc com-
mand at the end of the loop. Compare the last values of x in both loops to
make sure you are doing the same calculation. Compare the times needed
for the different loops for several different matrices A. Each time you run
the Mfile, a different matrix A is created.

3. In this exercise we use MATLAB to solve the equations used to describe
the system of springs and masses. We will work with a system of 7 springs
and 6 masses. We shall assume that the springs all have length l = .1 Let
the spring constants be kj, j = 1, . . . , 7. Let a = (a1, a2, . . . , a6) be the
equilibrium positions of the joints of the springs when then there are no
masses. They satisfy the equations Sa = b where S is the tridiagonal matrix
constructed from the spring constants

S =





















k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 0 0 0
0 −k3 k3 + k4 −k4 0 0
0 0 −k4 k4 + k5 −k5 0
0 0 0 −k5 k5 + k6 −k6

0 0 0 0 −k6 k6 + k7





















and b is the column vector

b = (l(k1 − k2), l(k2 − k3), l(k3 − l4), l(k4 − k5), l(k5 − k6), l(k6 − k7) + k7).

a) Write a script Mfile that does the following:

(i) Takes a vector of values kj as input;
(ii) Creates the matrix S and the vector b;
(iii) Solves the system Sa = b; and
(iv) Plots the joining points aj on the x axis.

Try various vectors of spring constants: First k = (1, 1, 1, 1, 1, 1, 1). Then
k = (1, 2, 3, 4, 3, 2, 1). Finally take k = (1, 2, 3, 4, 5, 6, 7). Give a physical
interpretation of your results in each case. Verify in each case that a1 ≥ l,
aj − aj−1 ≥ l, and 1 − a6 ≥ l. How do you interpret this physically?
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Now consider the system that describes the small displacements of the
masses. Let

dj = aj − aj−1, j = 2, . . . , 6

while
d1 = a1, d7 = 1 − a6.

The numbers dj are the lengths of the stretched springs in equilibrium. We
set

rj = 1 −
l

dj

Since all dj > l, the numbers rj > 0. Let T be the matrix obtained by
replacing kj in S by rjkj.

Let m = (m1, . . . , m6) be the vector of masses. Then the vector y =
(y1, . . . , y6) of small displacments of masses satisfies

Ty = −gm

where g is the gravitational constant, g = 9.8 m/s.

b) Extend the Mfile of part a) to do the following:

(i) Accepts a vector m = (m1, . . . , m6) of masses as input;
(ii) Creates the matrix T and the vector −gm;
(iii) Solves the system Ty = −mg;
(iv) plots the solution points (aj, yj)

Set all the kj = 1, and try various combinations of masses. First try all
mj = .001. Next try m1 = m2 = m3 = m6 = .01, and m4 = m5 = .003.
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