Instructions: Answer each of the 11 numbered problems on a separate answer sheet. Each answer sheet must have your name, your TA's name, and the problem number (=page number). Show all your work for each problem clearly on the answer sheet for that problem. You must show enough written work to justify your answers.

NO CALCULATORS

- 1. (10 points EACH)
 - a) Compute f'(e) when $f(x) = x^{-x}$.
 - b) Compute $\int_1^2 (\ln x)^2 dx$.
 - c) Evaluate $\int \frac{1}{x^2 + 2x 3} dx$.
- 2. (10 points EACH) Let $f(x) = 3x \ln x$.
 - a) Find the smallest number a so that the restriction of f to (a, ∞) has an inverse. Let h denote the inverse of f restricted to this interval.
 - b) Compute h'(0), where h is defined in part (a).
- 3. (10 points EACH)
 - a) Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-2)^{3n}}{3^{2n+1}}$
 - b) Does the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ converge or diverge? EXPLAIN your answer.
- 4. (15 points) Find the radius of convergence of the series $\sum_{n=2}^{\infty} \frac{2^n x^n}{(\ln n)^2}.$
- 5. (15 points) Suppose that y is a function of x, satisfies the differential equation $y' = \frac{xy}{x+2}$, and y(-1) = 1. Compute y(0).

- 6. (10 points EACH) Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for certain values of x.
 - a) Find a power series for the function $f(x) = \frac{x}{1-4x}$
 - b) Use the power series in (a) to compute $f^{(6)}(0)$, the sixth derivative of f evaluated at 0.
- 7. (15 points) Find the length L of the parametrized curve given by the equations

$$x = e^t \cos t, \quad y = e^t \sin t$$

for $0 \le t \le 1$.

- 8. (15 points) Let R be the region bounded below by the x-axis, on the left by the y-axis, and above by the graph of $y = \sqrt{1-x}$. Find the vertical coordinate \bar{y} of the center of gravity of R.
- 9. (15 points) Let R be the region inside the rectangle with vertices at (3, 1), (6, 1), (3, 3), and (6, 3). Find the volume V of the solid region formed by revolving R around the x-axis.
- 10. (15 points) Determine whether the improper integral $\int_0^3 \frac{2x}{(1-x^2)^2} dx$ converges or diverges, giving reasons. If it converges, then compute its value.
- 11. (10 points EACH)
 - a) Find the area A of one of the 4 'petals' of the polar graph $r = \cos 2\theta$.
 - b) Evaluate $\int \frac{1}{\sqrt{16-25x^2}} dx$.

END OF EXAM - GOOD LUCK!