Math 141, Fall 2000, Jeffrey Adams

Chapter 8 and 10 Review

Chapter 8

8.1: Volume of a region of cross section $A(x): \int_{a}^{b} A(x) d x$

Volume of the solid obtained by rotation the graph of $f(x)$ around the x -axis: for the function $f(x): \int_{a}^{b} \pi f(x)^{2} d x$
8.2: Length of the graph of $f(x): \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ This can also be thought of as $\int_{a}^{b} \sqrt{d x^{2}+d y^{2}}$
8.3: Surface area of the surface obtained by rotation the graph of $f(x)$ around the x-axis: $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
8.4: Work=Force \times Distance. Work done by a force $F(x)$ moving an object from a to $b: \int_{a}^{b} F(x) d x$.

Chapter 10

10.1: Parametrized curves: $x=x(t), y=y(t)$
10.2: Lenth of a curve paramtrized by $(f(t), g(t))$ for $a \leq t \leq b: \int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$ Surface area of the surface obtained by rotating the graph of this curve about the x-axis: $\int_{a}^{b} 2 \pi g(t) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$
10.3: Polar Coordinates: $x=r \cos (\theta), y=r \sin (\theta): r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}$

The latter equations don't uniquely determine r, θ : you can replace θ by $\theta+2 \pi k$, and also change both r to $-r$ and θ to $\theta+\pi$.
10.4: Length of a curve $r=r(\theta) \alpha \leq \theta \leq \beta: \int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

Area of the region bounded by this function: $\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta$

Complex Numbers

Definition and basic properties of complex numbers ($i^{2}=-1$, etc.)
Addition and multiplication of complex numbers
Absolute value and complex conjugate $\overline{x+i y}=x-i y,|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$.
Complex power series
Exponential function $e^{z}=\sum_{0}^{\infty} \frac{z^{n}}{n!}, \cos (z), \sin (z)$
Polar decomposition $z=r e^{i \theta}=r \cos (\theta)+i r \sin (\theta)$
Triginometric identities coming from $e^{i \theta+\phi}=e^{i \theta} e^{i \phi}$
Taking $n^{\text {th }}$ roots using polar decomposition (finding solutions to $z^{n}=w$)

