Math 141, Jeffrey Adams

Test 4, December 8, 2000 SOLUTIONS
Question 1. (a) Compute $f^{\prime}(x)=\ln (3) 3^{x}$. The surface area is

$$
\int_{0}^{3} 2 \pi 3^{x} \sqrt{1+\left(\ln (3) 3^{x}\right)^{2}} d x
$$

(b) Method 1. Solve for y: $y^{2}=1-4 x^{2}$, or $y= \pm \sqrt{1-4 x^{2}}$. The top half of the ellipse is given by $f(x)=\sqrt{1-4 x^{2}}$. Then $f^{\prime}(x)=\frac{1}{2}\left(1-4 x^{2}\right)^{-\frac{1}{2}}(-8 x)=$ $\frac{-4 x}{\sqrt{1-4 x^{2}}}$. The x -intercepts are given by (take $\left.y=0\right) 4 x^{2}=1$ or $x= \pm \frac{1}{2}$. The length of the ellipse is twice length of the top half, which is the graph of $f(x)$. So the length is $2 \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1+\frac{16 x^{2}}{1-4 x^{2}}} d x$.
Method 2. Parametrize the curve by $x(t)=\frac{1}{2} \cos (t), y(t)=\sin (t)$ with $0 \leq t \leq 2 \pi$. Then $x^{\prime}(t)=-\frac{1}{2} \sin (t), y^{\prime}(t)=\cos (t)$, and the integral is $\int_{0}^{2 \pi} \sqrt{\frac{1}{4} \sin ^{2}(t)+\cos ^{2}(t)} d t$.

Question 2
(a)(a) The integral is $\int_{0}^{1} \pi\left(\left(x^{2}\right)-\left(x^{2}\right)^{2}\right) d x=\pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x=\frac{\pi}{3} x^{3}-\left.\frac{\pi}{5} x^{5}\right|_{0} ^{1}=$ $\frac{\pi}{3}-\frac{\pi}{5}=\frac{2 \pi}{15}$.
(b) Put the origin at the bottom of the tank, with the positive x -axis in pointing up. The slice of the tank at height x is a disk. By similar triangles the radius of the disk $r(x)$ is given by $\frac{2}{4}=\frac{r(x)}{x}$, or $r(x)=\frac{1}{2} x$. The area of this slice is therefore $\pi\left(\frac{1}{2} x\right)^{2}=\frac{\pi}{4} x^{2}$. The weight of the slice at x of thickness $d x$ is therefore $62.5 \frac{\pi}{4} x^{2} d x$. This slice has to be raised $(4-x)+2=$ $6-x$ feet. The water goes from $x=0$ to $x=3$. The integral is therefore $\int_{0}^{3} 62.5(6-x)\left(\frac{\pi}{4} x^{2}\right) d x=62.5 \frac{\pi}{4} \int_{0}^{3}(6-x) x^{2} d x$.

Alternatively if you put the origin at the top of the tank with the positive x -axis pointing down, the radius at x is $\frac{1}{2}(4-x)$. The integral is $62.5 \frac{\pi}{4} \int_{4}^{1}(2+$ $x)(4-x)^{2} d x$. Note that the change of variable $w=4-x$ converts this integral into the previous one.

Question 3
(a) $x^{\prime}(t)=2 \sin (3 t) \cos (3 t) 3=6 \sin (3 t) \cos (3 t)$, and $y^{\prime}(t)=-2 \sin (2 t)$. The length of the curve is therefore $\int_{1}^{2} \sqrt{36 \sin ^{2}(3 t) \cos ^{2}(3 t)+4 \sin ^{2}(2 t)} d t$.

$$
\begin{aligned}
\int_{-\pi / 4}^{\pi / 4} \frac{1}{2}[3 \cos (2 \theta)]^{2} d \theta & =\int_{-\pi / 4}^{\pi / 4} \frac{9}{2} \cos ^{2}(2 \theta) d \theta \\
& =\frac{9}{2} \int_{-\pi / 4}^{\pi / 4} \frac{1}{2}(1+\cos (4 \theta)) d \theta \\
& =\frac{9}{4}\left[\theta+\frac{1}{4} \sin (4 \theta)\right]_{-\pi / 4}^{\pi / 4} \\
& =\frac{9}{4}\left[\frac{\pi}{4}+\frac{\pi}{4}\right]+\frac{9}{16}[\sin (\pi)-\sin (-\pi)] \\
& =\frac{9}{4} \frac{\pi}{2}-0=\frac{9 \pi}{8}
\end{aligned}
$$

Question 4
(a) We have $\bar{z}=4+4 i, z \bar{z}=(4+4 i)(4-4 i)=16+16=32,|z|=\sqrt{16+16}=$ $\sqrt{32}=4 \sqrt{2}$. If $4-4 i=r e^{i \theta}$ then $r=|z|=4 \sqrt{2}$ and $\tan (\theta)=\frac{-4}{4}=-1$. Since the point is in the fourth quadrant this gives $\theta=-\frac{\pi}{4}$. So $4-4 i=4 \sqrt{2} e^{-\pi i / 4}$. (b) [15] Write $-8=8 e^{i \pi}$. Write $z=r e^{i \theta}$, so $r^{3} e^{3 i \theta}=-8=8 e^{i \pi}$. We can add multiples of 2π on the right hand side, to get $r^{3} e^{3 i \theta}=8 e^{i(1+2 k) \pi}$. Therefore $r^{3}=8$, i.e. $r=2$ and $3 \theta=(1+2 k) \pi$, or $\theta=\frac{1+2 k}{3} \pi$. If $k=0,1,2$ we get $\theta=\frac{\pi}{3}, \frac{3 \pi}{3}=\pi$, and $\frac{5 \pi}{3}$ respectively. So $z=2 e^{i \frac{\pi}{3}}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=1+\sqrt{3} i$, $2 e^{i \pi}=-2$ and $2 e^{\frac{5 \pi}{3}}=2\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right)=2\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=1-\sqrt{3} i$.

FINAL INFORMATION

There is a review for the final on Thursday, December 11, in Room 0226 HJ Patterson Hall, 4-6 PM

The final is on Monday, December 15, 1:30-3:30. The room assignments are:

Xia Wang (0111/0121): PLS (Plant Sciences Building) 1140
Hector Gomez (0112/0122): CCC (Cambridge Community Center) 1205
Brian Alford (0131): HHP (Health and Human Performances Bulding) 1312
Eric Errthurm (0141): KEY (Frances Scott Key Hall) 0103

