TI-83 Program: SIMPSON'S RULE \& TRAPEZOIDAL RULE (press ENTER at end of line)

KEY IN

PRGM \gg ENTER SIMPSON
VARS >42
Disp 2nd α "LOWERLIMIT"
Input $\alpha \mathrm{A}$
Disp 2nd α "UPPERLIMIT"
Input $\alpha \mathrm{B}$
Disp α 2nd " α N ϕ SUBINTERVALS"
Disp 2nd α "ENTER EVEN N"
Input $\alpha \mathrm{N}$
ϕ STO α S
ϕ STO $\alpha \mathrm{V}$
$(\alpha B-\alpha A) \div \alpha N$ STO αW
$1 \mathrm{STO} \alpha \mathrm{J}$
Lbl 1
$\alpha \mathrm{A}+2(\alpha \mathrm{~J}-1) \alpha \mathrm{W}$ STO $\alpha \mathrm{L}$
$\alpha \mathrm{A}+2 \alpha \mathrm{~J} \alpha \mathrm{~W}$ STO $\alpha \mathrm{R}$
$(\alpha \mathrm{L}+\alpha \mathrm{R}) \div 2$ STO $\alpha \mathrm{M}$
α L STO X,T, θ,n
VARS >11 STO $\alpha \mathrm{L}$
α M STO X,T, θ, n
VARS >11 STO $\alpha \mathrm{M}$
α R STO X,T, θ, n
VARS >11 STO α R
$\alpha \mathrm{W}(\alpha \mathrm{L}+4 \alpha \mathrm{M}+\alpha \mathrm{R}) \div 3+\alpha \mathrm{S}$ STO $\alpha \mathrm{S}$
$\alpha \mathrm{W}(\alpha \mathrm{L}+2 \alpha \mathrm{M}+\alpha \mathrm{R}) \div 2+\alpha \mathrm{V}$ STO $\alpha \mathrm{V}$
$I S>\alpha \mathrm{J}, \alpha \mathrm{N} \div 2$)
Goto 1
Disp 2nd α "Simpson Rule"
Disp α S
Disp 2nd α "Trap. Rule"
Disp $\alpha \mathrm{V}$

EXPLANATION

Prgm 1: SIMPSON Program named "SIMPSON"
FnOff Deselects all functions
Disp "LOWERLIMIT" Lower limit of integration
Input A
Disp "UPPERLIMIT"
Input B
Disp "N SUBINTERVALS" Number of subintervals for [A, B] is N
Disp "ENTER EVEN N" The number N is to be entered
Input $\mathrm{N} \quad$ After ?, type in N
$\phi \rightarrow \mathrm{S} \quad 0$ is stored in location S (for Simpson's Rule)
$\phi \rightarrow \mathrm{V} \quad 0$ is stored in location V (for the Trapezoidal Rule)
$(\mathrm{B}-\mathrm{A}) / \mathrm{N} \rightarrow \mathrm{W} \quad$ Subinterval width $(\mathrm{B}-\mathrm{A}) / \mathrm{N}$ stored in location W
$1 \rightarrow \mathbf{J} \quad 1$ is stored in location J
Lbl 1 Start of loop
$A+2(J-1) W \rightarrow L \quad$ Left endpoint of $[A+2(j-1) W, A+2 j W]$ stored in L
$\mathrm{A}+2 \mathrm{JW} \rightarrow \mathrm{R}$
$(\mathrm{L}+\mathrm{R}) / 2 \rightarrow \mathrm{M} \quad$ Midpoint of $[\mathrm{A}+2(\mathrm{j}-1) \mathrm{W}, \mathrm{A}+2 \mathrm{jW}]$ stored in M
$\mathrm{L} \rightarrow \mathrm{X} \quad \mathrm{L}$ is stored in location X
$\mathrm{Y}_{1} \rightarrow \mathrm{~L} \quad \mathrm{Y}_{1}(\mathrm{~L})$ is stored in location L
$\mathrm{M} \rightarrow \mathrm{X} \quad \mathrm{M}$ is stored in location X
$\mathrm{Y}_{1} \rightarrow \mathrm{M} \quad \mathrm{Y}_{1}(\mathrm{M})$ is stored in location M
$\mathrm{R} \rightarrow \mathrm{X} \quad \mathrm{R}$ is stored in location X
$\mathrm{Y}_{1} \rightarrow \mathrm{R} \quad \mathrm{Y}_{1}(\mathrm{R})$ is stored in location R

To execute the program in order to evaluate $\int_{a}^{b} f(x) d x$, do the following: 2nd QUIT (to quit the program)
$\mathrm{Y}=$ key in your function $\mathrm{f}(\mathrm{x})$ ENTER 2nd QUIT PRGM (choose the program) ENTER
The display reads LOWERLIMIT, ? Key in A ENTER (gives the lower limit of integration)
The display reads UPPERLIMIT,? Key in B ENTER (gives the upper limit of integration)
The display reads ENTER N, ? Key in N ENTER (number of subintervals of [A, B])
The display then exhibits the Simpson Rule and Trapezoidal Rule approximations for the value of the integral. Note that with this program, the number of subintervals for each rule is even.
To execute the program again, just key in ENTER
Identification of italicized words in the program: Input $($ PRGM $>1) \quad$ Display $($ PRGM $>3)$
Label (PRGM 9) Goto (PRGM ϕ) IS > ((PRGM αA)
ϕ represents zero (distinguished from the letter 0); If you type $\alpha \phi$ then you get a "space" (between two words)

