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(1) [6] Recast the ordinary differential equation y′′′′ = eyy′′′ + (y′′)2 + cos(t3 + y′) as a
first-order system of ordinary differential equations.

(2) [10] Consider the vector-valued functions x1(t) =

(
4

3t2

)
, x2(t) =

(
t2

1 + t4

)
.

(a) [2] Compute the Wronskian Wr[x1,x2](t).
(b) [3] Find A(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = A(t)x wherever Wr[x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).
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(3) [6] Two interconnected tanks are filled with brine (salt water). At t = 0 the first tank
contains 26 liters and the second contains 19 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 2 liters per hour. At t = 0 there are 17 grams of salt in
the first tank and 31 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

(4) [10] Solve the initial-value problem

d

dt

(
x
y

)
=

(
−1 1
−4 −5

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
2
0

)
.
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(5) [6] Given that 2 is an eigenvalue of the matrix

B =

0 −1 2
1 2 −3
0 2 10

 ,

find all the eigenvectors of B associated with 2.

(6) [8] A 4× 4 matrix C has the eigenpairs5 ,


1
1
1
1


 ,

2 ,


1
1
−1
−1


 ,

−1 ,


1
−1
1
−1


 ,

−4 ,


1
−1
−1
1


 .

(a) Give an invertible matrix V and a diagonal matrix D such that etC = VetDV−1.
(You do not have to compute either V−1 or etC!)

(b) Give a fundamental matrix for the system x′ = Cx.
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(7) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
−3 2
−4 −7

)(
x
y

)
.

(8) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
3 5
3 1

)(
x
y

)
.
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(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator L = D3 + 4D.

(10) [8] Compute the Laplace transform of f(t) = u(t− 5) e−3t from its definition.
(Here u is the unit step function.)
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(11) [12] Consider the following (old style) MATLAB commands.

>> syms t s Y; f = [’t̂ 2 + heaviside(t − 2)*(4 − t̂ 2) − heaviside(t − 6)*4’];
>> diffeqn = sym(’D(D(y))(t) + 6*D(y)(t) + 34*y(t) = ’ f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {’laplace(y(t),t,s),t,s)’, ’y(0)’, ’D(y)(0)’}, {Y, 4, −2});
>> ytrans = simplify(solve(algeqn, Y));
>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(t) that is being solved.
(b) [8] Find the Laplace transform Y (s) of the solution y(t). (DO NOT take the

inverse Laplace transform of Y (s) to find y(t), just solve for Y (s)!)

You may refer to the table on the last page.

(12) [8] Find the inverse Laplace transform L−1[X(s)](t) of the function

X(s) = e−4s
3s+ 11

s2 + 6s+ 13
.

You may refer to the table on the last page.
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Workspace (Give the number of the problem being worked!)

Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s)

and u is the unit step function .

L[δ(t− c)h(t)](s) = e−csh(c) where δ is the unit impluse .


