
Third In-Class Exam Solutions
Math 246, Professor David Levermore

Tuesday, 24 April 2018

(1) [6] Recast the ordinary differential equation y′′′′ = eyy′′′ + (y′′)2 + cos(t3 + y′) as a
first-order system of ordinary differential equations.

Solution. Because the equation is fourth order, the first-order system must have
dimension at least four. The simplest such first-order system is

d

dt


x1
x2
x3
x4

 =


x2
x3
x4

ex1x4 + (x3)
2 + cos(t3 + x2)

 , where


x1
x2
x3
x4

 =


y
y′

y′′

y′′′

 .

(2) [10] Consider the vector-valued functions x1(t) =

(
4

3t2

)
, x2(t) =

(
t2

1 + t4

)
.

(a) [2] Compute the Wronskian Wr[x1,x2](t).
(b) [3] Find A(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = A(t)x wherever Wr[x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wr[x1,x2](t) = det

(
4 t2

3t2 1 + t4

)
= 4 · (1 + t4)− 3t2 · t2 = 4 + t4 .

Solution (b). Let Ψ(t) =

(
4 t2

3t2 1 + t4

)
. Because Ψ′(t) = A(t)Ψ(t), we have

A(t) = Ψ′(t)Ψ(t)−1 =

(
0 2t
6t 4t3

)(
4 t2

3t2 1 + t4

)−1
=

1

4 + t4

(
0 2t
6t 4t3

) (
1 + t4 −t2
−3t2 4

)
=

1

4 + t4

(
−6t3 8t

6t− 6t5 10t3

)
.

Solution (c). A general solution is

x(t) = c1x1(t) + c2x2(t) = c1

(
4

3t2

)
+ c2

(
t2

1 + t4

)
.

Solution (d). By using the fundamental matrix Ψ(t) from part (b) we find that the
Green matrix is

G(t, s) = Ψ(t)Ψ(s)−1 =

(
4 t2

3t2 1 + t4

)(
4 s2

3s2 1 + s4

)−1
=

1

4 + s4

(
4 t2

3t2 1 + t4

) (
1 + s4 −s2
−3s2 4

)
=

1

4 + s4

(
4 + 4s4 − 3t2s4 4t2 − 4s2

3t2 + 3t2s4 − 3t2 − 3t4s2 4 + 4t4 − 3t2s2

)
.
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(3) [6] Two interconnected tanks are filled with brine (salt water). At t = 0 the first tank
contains 26 liters and the second contains 19 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 2 liters per hour. At t = 0 there are 17 grams of salt in
the first tank and 31 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

Solution. Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

5 gr/lit
6 lit/hr

→

C1(t) gr/lit
3 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
8 lit/hr

→

← C2(t) gr/lit
7 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
2 lit/hr

V1(0) = 26 lit
S1(0) = 17 gr

V2(0) = 19 lit
S2(0) = 31 gr

We are asked to write down an initial-value problem that governs S1(t) and S2(t).

The rates work out so there will be V1(t) = 26 + 2t liters of brine in the first tank
and V2(t) = 19 − t liters in the second. Then S1(t) and S2(t) are governed by the
initial-value problem

dS1

dt
= 5 · 6 +

S2

19− t
7− S1

26 + 2t
8− S1

26 + 2t
3 , S1(0) = 17 ,

dS2

dt
=

S1

26 + 2t
8− S2

19− t
7− S2

19− t
2 , S2(0) = 31 .

Your answer could be left in the above form. However, it can be simplified to

dS1

dt
= 30 +

7

19− t
S2 −

11

26 + 2t
S1 , S1(0) = 17 ,

dS2

dt
=

8

26 + 2t
S1 −

9

19− t
S2 , S2(0) = 31 .

Remark. This first-order system of differential equations is linear. Its coefficients
are undefined either at t = −13 or at t = 19 and are continuous elsewhere. Its forcing
is constant, so is continuous everywhere. Therefore the natural interval of definition
for the solution of this initial-value problem is (−13, 19) because:
• the initial time t = 0 is in (−13, 19);
• all the coefficients and the forcing are continuous over (−13, 19);
• two coefficients are undefined at t = −13;
• two coefficients are undefined at t = 19.

However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 19) because the word problem starts at t = 0.
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(4) [10] Solve the initial-value problem

d

dt

(
x
y

)
=

(
−1 1
−4 −5

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
2
0

)
.

Solution by Formula. The characteristic polynomial of A =

(
−1 1
−4 −5

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 6z + 9 = (z + 3)2 .

This is a perfect square with µ = −3. Then

etA = e−3t [I + t (A + 3I)] = e−3t
[(

1 0
0 1

)
+ t

(
2 1
−4 −2

)]
= e−3t

(
1 + 2t t
−4t 1− 2t

)
.

(Check that tr(A− 4I) = 0!) Therefore the solution of the initial-value problem is

x(t) = etAxI = e−3t
(

1 + 2t t
−4t 1− 2t

)(
2
0

)
= e4t

(
2 + 4t
−8t

)
.

(5) [6] Given that 2 is an eigenvalue of the matrix

B =

0 −1 2
1 2 −3
0 2 10

 ,

find all the eigenvectors of B associated with 2.

Solution. The eigenvectors of B associated with 2 are all nonzero vectors v such
that Bv = 2v. Equivalently, they are all nonzero vectors v such that (B− 2I)v = 0,
which is −2 −1 2

1 0 −3
0 2 8

v1v2
v3

 =

0
0
0

 .

The entries of v thereby satisfy the homogeneous linear algebraic system

−2v1 − v2 + 2v3 = 0 ,

v1 − 3v3 = 0 ,

2v2 + 8v3 = 0 .

This system may be solved either by elimination or by row reduction. By either
method its general solution is found to be

v1 = 3α , v2 = −4α , v3 = α , for any constant α .

Therefore the eigenvectors of B associated with 2 each have the form

α

 3
−4
1

 for some constant α 6= 0 .
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(6) [8] A 4× 4 matrix C has the eigenpairs5 ,


1
1
1
1


 ,

2 ,


1
1
−1
−1


 ,

−1 ,


1
−1
1
−1


 ,

−4 ,


1
−1
−1
1


 .

(a) Give an invertible matrix V and a diagonal matrix D such that etC = VetDV−1.
(You do not have to compute either V−1 or etC!)

(b) Give a fundamental matrix for the system x′ = Cx.

Solution (a). One choice for V and D is

V =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , D =


5 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −4

 .

Solution (b). Use the given eigenpairs to construct the real eigensolutions

x1(t) = e5t


1
1
1
1

 , x2(t) = e2t


1
1
−1
−1

 ,

x3(t) = e−t


1
−1
1
−1

 , x4(t) = e−4t


1
−1
−1
1

 .

Then a fundamental matrix for the system is

Ψ(t) =
(
x1(t) x2(t) x3(t) x4(t)

)
=


e5t e2t e−t e−4t

e5t e2t −e−t −e−4t
e5t −e2t e−t −e−4t
e5t −e2t −e−t e−4t

 .

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

Ψ(t) = VetD =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



e5t 0 0 0
0 e2t 0 0
0 0 e−t 0
0 0 0 e−4t



=


e5t e2t e−t e−4t

e5t e2t −e−t −e−4t
e5t −e2t e−t −e−4t
e5t −e2t −e−t e−4t

 .
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(7) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
−3 2
−4 −7

)(
x
y

)
.

Solution by Formula. The characteristic polynomial of A =

(
−3 2
−4 −7

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 29 = (z + 5)2 + 22 .

This is a sum of squares with µ = −5 and ν = 2. Then

etA = e−5t
[
cos(2t)I +

sin(2t)

2
(A + 5I)

]
= e−5t

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
2 2
−4 −2

)]
= e−5t

(
cos(2t) + sin(2t) sin(2t)
−2 sin(2t) cos(2t)− sin(2t)

)
.

(Check that tr(A + 5I) = 0!) Therefore a real general solution of the system is

x(t) = etAc = c1e
−5t
(

cos(2t) + sin(2t)
−2 sin(2t)

)
+ c2e

−5t
(

sin(2t)
cos(2t)− sin(2t)

)
.

Solution by Eigen Methods. The characteristic polynomial of A =

(
−3 2
−4 −7

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 29 = (z + 5)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are −5+ i2 and −5− i2.
Consider the matrix

A− (−5− i2)I =

(
2 + i2 2
−4 −2 + i2

)
.

After checking that the determinant of this matrix is zero, we can read off from its
second column that an eigenpair of A is(

−5 + i2 ,

(
1

−1 + i

))
.

(Another eigenpair is the complex conjugate of this one, but we will not need it.)
This eigenpair yields the complex-valued eigensolution

x(t) = e(−5+i2)t

(
1

−1 + i

)
= e−5t

(
cos(2t) + i sin(2t)

)( 1
−1 + i

)
= e−5t

(
cos(2t) + i sin(2t)(

cos(2t) + i sin(2t)
)
(−1 + i)

)
= e−5t

(
cos(2t) + i sin(2t)(

− cos(2t)− sin(2t)
)

+ i
(

cos(2t)− sin(2t)
)) .
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From the real and imaginary parts of this complex-valued eigensolution we can read
off that a fundamental set of real solutions is

x1(t) = e−5t
(

cos(2t)
− cos(2t)− sin(2t)

)
, x2(t) = e−5t

(
sin(2t)

cos(2t)− sin(2t)

)
.

Therefore a real general solution is

x(t) = c1e
−5t
(

cos(2t)
− cos(2t)− sin(2t)

)
+ c2e

−5t
(

sin(2t)
cos(2t)− sin(2t)

)
.

(8) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
3 5
3 1

)(
x
y

)
.

Solution by Eigen Methods. The characteristic polynomial of A =

(
3 5
3 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 4z − 12 = (z − 6)(z + 2) .

The eigenvalues of A are the roots of this polynomial, which are −2 and 6. Consider
the matrices

A + 2I =

(
5 5
3 3

)
, A− 6I =

(
−3 5
3 −5

)
.

After checking that the determinant of each matrix is zero, we can read off that
eigenpairs of A are (

−2 ,

(
1
−1

))
,

(
6 ,

(
5
3

))
.

Therefore a real general solution of the system is

x(t) = c1e
−2t
(

1
−1

)
+ c2e

6t

(
5
3

)
.

Solution by Formula. The characteristic polynomial of A =

(
3 5
3 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 4z − 12 = (z − 2)2 − 42 .

This is a difference of squares with µ = 2 and ν = 4. Then

etA = e2t
[
cosh(4t)I +

sinh(4t)

4

(
A− 2I

)]
= e2t

[
cosh(4t)

(
1 0
0 1

)
+

sinh(4t)

4

(
1 5
3 −1

)]

= e2t

cosh(4t) + 1
4

sinh(4t) 5
4

sinh(4t)

3
4

sinh(4t) cosh(4t)− 1
4

sinh(4t)

 .
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(Check that tr(A− 2I) = 0!) Therefore a real general solution of the system is

x(t) = etAc = e2t

cosh(4t) + 1
4

sinh(4t) 5
4

sinh(4t)

3
4

sinh(4t) cosh(4t)− 1
4

sinh(4t)

c1
c2


= c1e

2t

cosh(4t) + 1
4

sinh(4t)

3
4

sinh(4t)

+ c2e
2t

 5
4

sinh(4t)

cosh(4t)− 1
4

sinh(4t)

 .

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator L = D3 + 4D.

Solution from Green Function. The operator L = D3 + 4D has characteristic
polynomial

p(s) = s3 + 4s = s(s2 + 4) .

We have the partial-fraction identity

1

p(s)
=

1

s3 + 4s
=

1
4

s
+
−1

4
s

s2 + 4
.

Then from item 1 in the table with a = 0 and n = 0, and item 2 in the table with
a = 0 and b = 2 we see that the Green function for the operator L = D3 + 4D is

g(t) = L−1
[

1

p(s)

]
(t) = 1

4
L−1
[

1

s

]
(t)− 1

4
L−1
[

s

s2 + 22

]
(t)

= 1
4
· 1− 1

4
cos(2t) .

Because we see the characteristic polynomial as

p(s) = s3 + 0s2 + 4s+ 0 ,

the natural fundamental set is given by

N2(t) = g(t) = 1
4
− 1

4
cos(2t) ,

N1(t) = N ′2(t) + 0g(t) = 1
2

sin(2t) ,

N0(t) = N ′1(t) + 4g(t) = cos(2t) + 4
(
1
4
− 1

4
cos(2t)

)
= 1 .

Solution from General Initial-Value Problem. For the operator L = D3 + 4D
the general initial-value problem for initial-time 0 is

y′′′ + 4y′ = 0 , y(0) = y0 , y′(0) = y1 , y′′(0) = y2 .

Its characteristic polynomial is

p(z) = z3 + 4z = z(z2 + 4) = z(z2 + 22) ,

which has roots i2, −i2 and 0. Therefore a real general solution is

y(t) = c1 cos(2t) + c2 sin(2t) + c3 .

Because

y′(t) = −2c1 sin(2t) + 2c2 cos(2t) , y′′(t) = −4c1 cos(2t)− 4c2 sin(2t) ,
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the general initial conditions yield the linear algebraic system

y0 = y(0) = c1 cos(0) + c2 sin(0) + c3 = c1 + c3 ,

y1 = y′(0) = −2c1 sin(0) + 2c2 cos(0) = 2c2 ,

y2 = y′′(0) = −4c1 cos(0)− 4c2 sin(0) = −4c1 .

The solution of this system is

c1 = −1
4
y2 , c2 = 1

2
y1 , c3 = y0 + 1

4
y2 .

Therefore the solution of the general initial-value problem is

y = −1
4
y2 cos(2t) + 1

2
y1 sin(2t) + (y0 + 1

4
y2)

= y0 + y1
1
2

sin(2t) + y2
1
4

(
1− cos(2t)

)
.

We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator L = D3 + 4D is

N0(t) = 1 , N1(t) = 1
2

sin(2t) , N2(t) = 1
4

(
1− cos(2t)

)
.

(10) [8] Compute the Laplace transform of f(t) = u(t− 5) e−3t from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stu(t− 5) e−3t dt = lim
T→∞

∫ T

5

e−(s+3)t dt .

When s ≤ −3 this limit diverges to +∞ because in that case we have for every T > 5∫ T

5

e−(s+3)t dt ≥
∫ T

5

dt = T − 5 ,

which clearly diverges to +∞ as T →∞.

When s > −3 we have for every T > 5∫ T

5

e−(s+3)t dt = −e
−(s+3)t

s+ 3

∣∣∣∣T
5

= −e
−(s+3)T

s+ 3
+
e−(s+3)5

s+ 3
,

whereby

L[f ](s) = lim
T→∞

[
− e−(s+3)T

s+ 3
+
e−(s+3)5

s+ 3

]
=
e−(s+3)5

s+ 3
for s > −3 .

Therefore the definition of the Laplace transform shows that

L[f ](s) =


e−(s+3)5

s+ 3
for s > −3 ,

undefined for s ≤ −3 .
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(11) [12] Consider the following (old style) MATLAB commands.

>> syms t s Y; f = [’t̂ 2 + heaviside(t − 2)*(4 − t̂ 2) − heaviside(t − 6)*4’];
>> diffeqn = sym(’D(D(y))(t) + 6*D(y)(t) + 34*y(t) = ’ f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {’laplace(y(t),t,s),t,s)’, ’y(0)’, ’D(y)(0)’}, {Y, 4, −2});
>> ytrans = simplify(solve(algeqn, Y));
>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(t) that is being solved.
(b) [8] Find the Laplace transform Y (s) of the solution y(t). (DO NOT take the

inverse Laplace transform of Y (s) to find y(t), just solve for Y (s)!)

You may refer to the table on the last page.

Solution (a). The initial-value problem for y(t) that is being solved is

y′′ + 6y′ + 34y = f(t) , y(0) = 4 , y′(0) = −2 ,

where the forcing f(t) can be expressed either as the piecewise-defined function

f(t) =


t2 for 0 ≤ t < 2 ,

4 for 2 ≤ t < 6 ,

0 for 6 ≤ t ,

or in terms of the unit step function as

f(t) = t2 + u(t− 2)(4− t2)− u(t− 6)4 .

Solution (b). The Laplace transform of the initial-value problem is

L[y′′](s) + 6L[y′](s) + 34L[y](s) = L[f ](s) .

Because

L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = s Y (s)− 4 ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s)− 4s+ 2 ,

the Laplace transform of the initial-value problem becomes(
s2Y (s)− 4s+ 2

)
+ 6
(
sY (s)− 4

)
+ 34Y (s) = L[f ](s) .

This simplifies to

(s2 + 6s+ 34)Y (s)− 4s− 22 = L[f ](s) ,

whereby

Y (s) =
1

s2 + 6s+ 34

(
4s+ 22 + L[f ](s)

)
.

To compute L[f ](s), we write f(t) as

f(t) = t2 + u(t− 2)(4− t2)− u(t− 6)4

= t2 + u(t− 2)j1(t− 2) + u(t− 6)j2(t− 6) ,
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where by setting j1(t − 2) = 4 − t2 and j2(t − 6) = −4 we see by the shifty step
method that

j1(t) = 4− (t+ 2)2 = 4− t2 − 4t− 4 = −t2 − 4t , j2(t) = −4 .

Referring to the table on the last page, item 1 with a = 0 and n = 0, with a = 0 and
n = 1, and with a = 0 and n = 2 shows that

L[1](s) =
1

s
, L[t](s) =

1

s2
, L[t2](s) =

2

s3
,

whereby item 6 with c = 2 and j(t) = j1(t) and with c = 6 and j(t) = j2(t) shows
that

L
[
u(t− 2)j1(t− 2)

]
(s) = e−2sL[j1](s) = −e−2sL[t2 + 4t](s) = −e−2s

(
3

s
− 1

s2

)
,

L
[
u(t− 6)j2(t− 6)

]
(s) = e−6sL[j2](s) = −e−6sL[6](s) = −e−6s6

s
.

Therefore

L[f ](s) = L
[
t2 + u(t− 2)j1(t− 2) + u(t− 6)j2(t− 6)

]
(s)

=
2

s3
− e−2s

(
2

s3
+

4

s2

)
− e−6s4

s
.

Upon placing this result into the expression for Y (s) found earlier, we obtain

Y (s) =
1

s2 + 6s+ 34

(
4s+ 22 +

2

s3
− e−2s

(
2

s3
+

4

s2

)
− e−6s4

s

)
.

(12) [8] Find the inverse Laplace transform L−1[X(s)](t) of the function

X(s) = e−4s
3s+ 11

s2 + 6s+ 13
.

You may refer to the table on the last page.

Solution. Referring to the table on the last page, item 6 with c = 4 implies that

L−1
[
e−4s J(s)

]
= u(t− 4)j(t− 4) , where j(t) = L−1[J(s)](t) .

We apply this formula to

J(s) =
3s+ 11

s2 + 6s+ 13
.

Because s2 + 6s+ 13 = (s+ 3)2 + 22, we have the partial fraction identity

J(s) =
3s+ 11

s2 + 6s+ 13
=

3(s+ 3) + 2

(s+ 3)2 + 22
= 3

s+ 3

(s+ 3)2 + 22
+

2

(s+ 3)2 + 22
.

Referring to the table on the last page, items 2 and 3 with a = −3 and b = 2 imply
that

L−1
[

s+ 3

(s+ 3)2 + 22

]
= e−3t cos(2t) , L−1

[
2

(s+ 3)2 + 22

]
= e−3t sin(2t) .
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The above formulas and the linearity of the inverse Laplace transform yield

j(t) = L−1[J(s)](t) = L−1
[

3s+ 11

s2 + 6s+ 13

]
(t)

= L−1
[
3

s+ 3

(s+ 3)2 + 22
+

2

(s+ 3)2 + 22

]
(t)

= 3L−1
[

s+ 3

(s+ 3)2 + 22

]
(t) + L−1

[
2

(s+ 3)2 + 22

]
(t)

= 3e−3t cos(2t) + e−3t sin(2t) .

Therefore

L−1
[
Y (s)

]
(t) = L−1[e−4sJ(s)](t) = u(t− 4)j(t− 4)

= u(t− 4)
(

3e−3(t−4) cos(t− 4) + e−3(t−4) sin(t− 4)
)
.

Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s)

and u is the unit step function .

L[δ(t− c)h(t)](s) = e−csh(c) where δ is the unit impluse .


