Third In-Class Exam Solutions
 Math 246, Professor David Levermore

Tuesday, 24 April 2018
(1) [6] Recast the ordinary differential equation $y^{\prime \prime \prime \prime}=e^{y} y^{\prime \prime \prime}+\left(y^{\prime \prime}\right)^{2}+\cos \left(t^{3}+y^{\prime}\right)$ as a first-order system of ordinary differential equations.
Solution. Because the equation is fourth order, the first-order system must have dimension at least four. The simplest such first-order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{x_{4}}{e^{x_{1}} x_{4}+\left(x_{3}\right)^{2}+\cos \left(t^{3}+x_{2}\right)}, \quad \text { where } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime} \\
y^{\prime \prime \prime}
\end{array}\right) .
$$

(2) [10] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{4}{3 t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{2}}{1+t^{4}}$.
(a) [2] Compute the Wronskian $\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.
(b) [3] Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system $\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x}$ wherever $\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

$$
\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
4 & t^{2} \\
3 t^{2} & 1+t^{4}
\end{array}\right)=4 \cdot\left(1+t^{4}\right)-3 t^{2} \cdot t^{2}=4+t^{4}
$$

Solution (b). Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}4 & t^{2} \\ 3 t^{2} & 1+t^{4}\end{array}\right)$. Because $\boldsymbol{\Psi}^{\prime}(t)=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, we have

$$
\begin{aligned}
\mathbf{A}(t) & =\mathbf{\Psi}^{\prime}(t) \mathbf{\Psi}(t)^{-1}=\left(\begin{array}{cc}
0 & 2 t \\
6 t & 4 t^{3}
\end{array}\right)\left(\begin{array}{cc}
4 & t^{2} \\
3 t^{2} & 1+t^{4}
\end{array}\right)^{-1} \\
& =\frac{1}{4+t^{4}}\left(\begin{array}{cc}
0 & 2 t \\
6 t & 4 t^{3}
\end{array}\right)\left(\begin{array}{cc}
1+t^{4} & -t^{2} \\
-3 t^{2} & 4
\end{array}\right)=\frac{1}{4+t^{4}}\left(\begin{array}{cc}
-6 t^{3} & 8 t \\
6 t-6 t^{5} & 10 t^{3}
\end{array}\right) .
\end{aligned}
$$

Solution (c). A general solution is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{4}{3 t^{2}}+c_{2}\binom{t^{2}}{1+t^{4}} .
$$

Solution (d). By using the fundamental matrix $\boldsymbol{\Psi}(t)$ from part (b) we find that the Green matrix is

$$
\begin{aligned}
\mathbf{G}(t, s) & =\boldsymbol{\Psi}(t) \boldsymbol{\Psi}(s)^{-1}=\left(\begin{array}{cc}
4 & t^{2} \\
3 t^{2} & 1+t^{4}
\end{array}\right)\left(\begin{array}{cc}
4 & s^{2} \\
3 s^{2} & 1+s^{4}
\end{array}\right)^{-1} \\
& =\frac{1}{4+s^{4}}\left(\begin{array}{cc}
4 & t^{2} \\
3 t^{2} & 1+t^{4}
\end{array}\right)\left(\begin{array}{cc}
1+s^{4} & -s^{2} \\
-3 s^{2} & 4
\end{array}\right) \\
& =\frac{1}{4+s^{4}}\left(\begin{array}{cc}
4+4 s^{4}-3 t^{2} s^{4} & 4 t^{2}-4 s^{2} \\
3 t^{2}+3 t^{2} s^{4}-3 t^{2}-3 t^{4} s^{2} & 4+4 t^{4}-3 t^{2} s^{2}
\end{array}\right) .
\end{aligned}
$$

(3) [6] Two interconnected tanks are filled with brine (salt water). At $t=0$ the first tank contains 26 liters and the second contains 19 liters. Brine with a salt concentration of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine flows from the first tank into the second at 8 liters per hour, from the second into the first at 7 liters per hour, from the first into a drain at 3 liter per hour, and from the second into a drain at 2 liters per hour. At $t=0$ there are 17 grams of salt in the first tank and 31 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
Solution. Let $V_{1}(t)$ and $V_{2}(t)$ be the volumes (lit) of brine in the first and second tank at time t hours. Let $S_{1}(t)$ and $S_{2}(t)$ be the mass (gr) of salt in the first and second tank at time t hours. Because the mixtures are assumed to be well-stirred, the salt concentration of the brine in the tanks at time t are $C_{1}(t)=S_{1}(t) / V_{1}(t)$ and $C_{2}(t)=S_{2}(t) / V_{2}(t)$ respectively. In particular, these are the concentrations of the brine that flows out of these tanks. We have the following picture.

We are asked to write down an initial-value problem that governs $S_{1}(t)$ and $S_{2}(t)$.
The rates work out so there will be $V_{1}(t)=26+2 t$ liters of brine in the first tank and $V_{2}(t)=19-t$ liters in the second. Then $S_{1}(t)$ and $S_{2}(t)$ are governed by the initial-value problem

$$
\begin{array}{rlrl}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t} & =5 \cdot 6+\frac{S_{2}}{19-t} 7-\frac{S_{1}}{26+2 t} 8-\frac{S_{1}}{26+2 t} 3, & & S_{1}(0)=17 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t} & =\frac{S_{1}}{26+2 t} 8-\frac{S_{2}}{19-t} 7-\frac{S_{2}}{19-t} 2, & S_{2}(0)=31
\end{array}
$$

Your answer could be left in the above form. However, it can be simplified to

$$
\begin{aligned}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t} & =30+\frac{7}{19-t} S_{2}-\frac{11}{26+2 t} S_{1}, & S_{1}(0) & =17, \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t} & =\frac{8}{26+2 t} S_{1}-\frac{9}{19-t} S_{2}, & S_{2}(0) & =31
\end{aligned}
$$

Remark. This first-order system of differential equations is linear. Its coefficients are undefined either at $t=-13$ or at $t=19$ and are continuous elsewhere. Its forcing is constant, so is continuous everywhere. Therefore the natural interval of definition for the solution of this initial-value problem is $(-13,19)$ because:

- the initial time $t=0$ is in $(-13,19)$;
- all the coefficients and the forcing are continuous over $(-13,19)$;
- two coefficients are undefined at $t=-13$;
- two coefficients are undefined at $t=19$.

However, it could also be argued that the interval of definition for the solution of this initial-value problem is $[0,19)$ because the word problem starts at $t=0$.
(4) [10] Solve the initial-value problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{cc}
-1 & 1 \\
-4 & -5
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{2}{0}
$$

Solution by Formula. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}-1 & 1 \\ -4 & -5\end{array}\right)$ is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+6 z+9=(z+3)^{2} .
$$

This is a perfect square with $\mu=-3$. Then

$$
\begin{aligned}
e^{t \mathbf{A}}=e^{-3 t}[\mathbf{I}+t(\mathbf{A}+3 \mathbf{I})] & =e^{-3 t}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+t\left(\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right)\right] \\
& =e^{-3 t}\left(\begin{array}{cc}
1+2 t & t \\
-4 t & 1-2 t
\end{array}\right) .
\end{aligned}
$$

(Check that $\operatorname{tr}(\mathbf{A}-4 \mathbf{I})=0$!) Therefore the solution of the initial-value problem is

$$
\mathbf{x}(t)=e^{t \mathbf{A}} \mathbf{x}^{I}=e^{-3 t}\left(\begin{array}{cc}
1+2 t & t \\
-4 t & 1-2 t
\end{array}\right)\binom{2}{0}=e^{4 t}\binom{2+4 t}{-8 t}
$$

(5) [6] Given that 2 is an eigenvalue of the matrix

$$
\mathbf{B}=\left(\begin{array}{ccc}
0 & -1 & 2 \\
1 & 2 & -3 \\
0 & 2 & 10
\end{array}\right)
$$

find all the eigenvectors of \mathbf{B} associated with 2 .
Solution. The eigenvectors of \mathbf{B} associated with 2 are all nonzero vectors \mathbf{v} such that $\mathbf{B v}=2 \mathbf{v}$. Equivalently, they are all nonzero vectors \mathbf{v} such that $(\mathbf{B}-2 \mathbf{I}) \mathbf{v}=\mathbf{0}$, which is

$$
\left(\begin{array}{ccc}
-2 & -1 & 2 \\
1 & 0 & -3 \\
0 & 2 & 8
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The entries of \mathbf{v} thereby satisfy the homogeneous linear algebraic system

$$
\begin{aligned}
-2 v_{1}-v_{2}+2 v_{3} & =0, \\
v_{1}-3 v_{3} & =0, \\
2 v_{2}+8 v_{3} & =0 .
\end{aligned}
$$

This system may be solved either by elimination or by row reduction. By either method its general solution is found to be

$$
v_{1}=3 \alpha, \quad v_{2}=-4 \alpha, \quad v_{3}=\alpha, \quad \text { for any constant } \alpha
$$

Therefore the eigenvectors of \mathbf{B} associated with 2 each have the form

$$
\alpha\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right) \quad \text { for some constant } \alpha \neq 0
$$

(6) [8] A 4×4 matrix \mathbf{C} has the eigenpairs

$$
\left(5,\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)\right), \quad\left(-1,\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)\right), \quad\left(-4,\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)\right) .
$$

(a) Give an invertible matrix \mathbf{V} and a diagonal matrix \mathbf{D} such that $e^{t \mathbf{C}}=\mathbf{V} e^{t \mathbf{D}} \mathbf{V}^{-1}$. (You do not have to compute either \mathbf{V}^{-1} or $e^{t \mathbf{C}}$!)
(b) Give a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{C x}$.

Solution (a). One choice for \mathbf{V} and \mathbf{D} is

$$
\mathbf{V}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -4
\end{array}\right)
$$

Solution (b). Use the given eigenpairs to construct the real eigensolutions

$$
\begin{array}{ll}
\mathbf{x}_{1}(t)=e^{5 t}\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right), & \mathbf{x}_{2}(t)=e^{2 t}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right) \\
\mathbf{x}_{3}(t)=e^{-t}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), & \mathbf{x}_{4}(t)=e^{-4 t}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right) .
\end{array}
$$

Then a fundamental matrix for the system is

$$
\boldsymbol{\Psi}(t)=\left(\begin{array}{llll}
\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t) & \mathbf{x}_{3}(t) & \mathbf{x}_{4}(t)
\end{array}\right)=\left(\begin{array}{cccc}
e^{5 t} & e^{2 t} & e^{-t} & e^{-4 t} \\
e^{5 t} & e^{2 t} & -e^{-t} & -e^{-4 t} \\
e^{5 t} & -e^{2 t} & e^{-t} & -e^{-4 t} \\
e^{5 t} & -e^{2 t} & -e^{-t} & e^{-4 t}
\end{array}\right)
$$

Alternative Solution (b). Given the \mathbf{V} and \mathbf{D} from part (a), a fundamental matrix for the system is

$$
\begin{aligned}
\boldsymbol{\Psi}(t)=\mathbf{V} e^{t \mathbf{D}} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{cccc}
e^{5 t} & 0 & 0 & 0 \\
0 & e^{2 t} & 0 & 0 \\
0 & 0 & e^{-t} & 0 \\
0 & 0 & 0 & e^{-4 t}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
e^{5 t} & e^{2 t} & e^{-t} & e^{-4 t} \\
e^{5 t} & e^{2 t} & -e^{-t} & -e^{-4 t} \\
e^{5 t} & -e^{2 t} & e^{-t} & -e^{-4 t} \\
e^{5 t} & -e^{2 t} & -e^{-t} & e^{-4 t}
\end{array}\right) .
\end{aligned}
$$

(7) [8] Find a real general solution of the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{cc}
-3 & 2 \\
-4 & -7
\end{array}\right)\binom{x}{y} .
$$

Solution by Formula. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}-3 & 2 \\ -4 & -7\end{array}\right)$ is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+10 z+29=(z+5)^{2}+2^{2} .
$$

This is a sum of squares with $\mu=-5$ and $\nu=2$. Then

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{-5 t}\left[\cos (2 t) \mathbf{I}+\frac{\sin (2 t)}{2}(\mathbf{A}+5 \mathbf{I})\right] \\
& =e^{-5 t}\left[\cos (2 t)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{\sin (2 t)}{2}\left(\begin{array}{cc}
2 & 2 \\
-4 & -2
\end{array}\right)\right] \\
& =e^{-5 t}\left(\begin{array}{cc}
\cos (2 t)+\sin (2 t) & \sin (2 t) \\
-2 \sin (2 t) & \cos (2 t)-\sin (2 t)
\end{array}\right) .
\end{aligned}
$$

$($ Check that $\operatorname{tr}(\mathbf{A}+5 \mathbf{I})=0$!) Therefore a real general solution of the system is

$$
\mathbf{x}(t)=e^{t \mathbf{A}} \mathbf{c}=c_{1} e^{-5 t}\binom{\cos (2 t)+\sin (2 t)}{-2 \sin (2 t)}+c_{2} e^{-5 t}\binom{\sin (2 t)}{\cos (2 t)-\sin (2 t)} .
$$

Solution by Eigen Methods. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}-3 & 2 \\ -4 & -7\end{array}\right)$ is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+10 z+29=(z+5)^{2}+2^{2} .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $-5+i 2$ and $-5-i 2$. Consider the matrix

$$
\mathbf{A}-(-5-i 2) \mathbf{I}=\left(\begin{array}{cc}
2+i 2 & 2 \\
-4 & -2+i 2
\end{array}\right)
$$

After checking that the determinant of this matrix is zero, we can read off from its second column that an eigenpair of \mathbf{A} is

$$
\left(-5+i 2,\binom{1}{-1+i}\right) .
$$

(Another eigenpair is the complex conjugate of this one, but we will not need it.) This eigenpair yields the complex-valued eigensolution

$$
\begin{aligned}
\mathbf{x}(t) & =e^{(-5+i 2) t}\binom{1}{-1+i}=e^{-5 t}(\cos (2 t)+i \sin (2 t))\binom{1}{-1+i} \\
& =e^{-5 t}\binom{\cos (2 t)+i \sin (2 t)}{(\cos (2 t)+i \sin (2 t))(-1+i)} \\
& =e^{-5 t}\binom{\cos (2 t)+i \sin (2 t)}{(-\cos (2 t)-\sin (2 t))+i(\cos (2 t)-\sin (2 t))}
\end{aligned}
$$

From the real and imaginary parts of this complex-valued eigensolution we can read off that a fundamental set of real solutions is

$$
\mathbf{x}_{1}(t)=e^{-5 t}\binom{\cos (2 t)}{-\cos (2 t)-\sin (2 t)}, \quad \mathbf{x}_{2}(t)=e^{-5 t}\binom{\sin (2 t)}{\cos (2 t)-\sin (2 t)} .
$$

Therefore a real general solution is

$$
\mathbf{x}(t)=c_{1} e^{-5 t}\binom{\cos (2 t)}{-\cos (2 t)-\sin (2 t)}+c_{2} e^{-5 t}\binom{\sin (2 t)}{\cos (2 t)-\sin (2 t)} .
$$

(8) [8] Find a real general solution of the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{ll}
3 & 5 \\
3 & 1
\end{array}\right)\binom{x}{y} .
$$

Solution by Eigen Methods. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}3 & 5 \\ 3 & 1\end{array}\right)$ is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-4 z-12=(z-6)(z+2) .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are -2 and 6 . Consider the matrices

$$
\mathbf{A}+2 \mathbf{I}=\left(\begin{array}{ll}
5 & 5 \\
3 & 3
\end{array}\right), \quad \mathbf{A}-6 \mathbf{I}=\left(\begin{array}{cc}
-3 & 5 \\
3 & -5
\end{array}\right)
$$

After checking that the determinant of each matrix is zero, we can read off that eigenpairs of \mathbf{A} are

$$
\left(-2,\binom{1}{-1}\right), \quad\left(6,\binom{5}{3}\right) .
$$

Therefore a real general solution of the system is

$$
\mathbf{x}(t)=c_{1} e^{-2 t}\binom{1}{-1}+c_{2} e^{6 t}\binom{5}{3} .
$$

Solution by Formula. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}3 & 5 \\ 3 & 1\end{array}\right)$ is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-4 z-12=(z-2)^{2}-4^{2} .
$$

This is a difference of squares with $\mu=2$ and $\nu=4$. Then

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{2 t}\left[\cosh (4 t) \mathbf{I}+\frac{\sinh (4 t)}{4}(\mathbf{A}-2 \mathbf{I})\right] \\
& =e^{2 t}\left[\cosh (4 t)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{\sinh (4 t)}{4}\left(\begin{array}{cc}
1 & 5 \\
3 & -1
\end{array}\right)\right] \\
& =e^{2 t}\left(\begin{array}{cc}
\cosh (4 t)+\frac{1}{4} \sinh (4 t) & \frac{5}{4} \sinh (4 t) \\
\frac{3}{4} \sinh (4 t) & \cosh (4 t)-\frac{1}{4} \sinh (4 t)
\end{array}\right) .
\end{aligned}
$$

$($ Check that $\operatorname{tr}(\mathbf{A}-2 \mathbf{I})=0$!) Therefore a real general solution of the system is

$$
\begin{aligned}
\mathbf{x}(t)=e^{t \mathbf{A}} \mathbf{c} & =e^{2 t}\left(\begin{array}{cc}
\cosh (4 t)+\frac{1}{4} \sinh (4 t) & \frac{5}{4} \sinh (4 t) \\
\frac{3}{4} \sinh (4 t) & \cosh (4 t)-\frac{1}{4} \sinh (4 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1} e^{2 t}\binom{\cosh (4 t)+\frac{1}{4} \sinh (4 t)}{\frac{3}{4} \sinh (4 t)}+c_{2} e^{2 t}\binom{\frac{5}{4} \sinh (4 t)}{\cosh (4 t)-\frac{1}{4} \sinh (4 t)} .
\end{aligned}
$$

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0 for the operator $L=D^{3}+4 D$.

Solution from Green Function. The operator $\mathrm{L}=\mathrm{D}^{3}+4 \mathrm{D}$ has characteristic polynomial

$$
p(s)=s^{3}+4 s=s\left(s^{2}+4\right) .
$$

We have the partial-fraction identity

$$
\frac{1}{p(s)}=\frac{1}{s^{3}+4 s}=\frac{\frac{1}{4}}{s}+\frac{-\frac{1}{4} s}{s^{2}+4}
$$

Then from item 1 in the table with $a=0$ and $n=0$, and item 2 in the table with $a=0$ and $b=2$ we see that the Green function for the operator $\mathrm{L}=\mathrm{D}^{3}+4 \mathrm{D}$ is

$$
\begin{aligned}
g(t)=\mathcal{L}^{-1}\left[\frac{1}{p(s)}\right](t) & =\frac{1}{4} \mathcal{L}^{-1}\left[\frac{1}{s}\right](t)-\frac{1}{4} \mathcal{L}^{-1}\left[\frac{s}{s^{2}+2^{2}}\right](t) \\
& =\frac{1}{4} \cdot 1-\frac{1}{4} \cos (2 t)
\end{aligned}
$$

Because we see the characteristic polynomial as

$$
p(s)=s^{3}+0 s^{2}+4 s+0
$$

the natural fundamental set is given by

$$
\begin{aligned}
& N_{2}(t)=g(t)=\frac{1}{4}-\frac{1}{4} \cos (2 t) \\
& N_{1}(t)=N_{2}^{\prime}(t)+0 g(t)=\frac{1}{2} \sin (2 t) \\
& N_{0}(t)=N_{1}^{\prime}(t)+4 g(t)=\cos (2 t)+4\left(\frac{1}{4}-\frac{1}{4} \cos (2 t)\right)=1 .
\end{aligned}
$$

Solution from General Initial-Value Problem. For the operator $L=D^{3}+4 D$ the general initial-value problem for initial-time 0 is

$$
y^{\prime \prime \prime}+4 y^{\prime}=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}, \quad y^{\prime \prime}(0)=y_{2}
$$

Its characteristic polynomial is

$$
p(z)=z^{3}+4 z=z\left(z^{2}+4\right)=z\left(z^{2}+2^{2}\right)
$$

which has roots $i 2,-i 2$ and 0 . Therefore a real general solution is

$$
y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)+c_{3} .
$$

Because

$$
y^{\prime}(t)=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t), \quad y^{\prime \prime}(t)=-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t),
$$

the general initial conditions yield the linear algebraic system

$$
\begin{aligned}
& y_{0}=y(0)=c_{1} \cos (0)+c_{2} \sin (0)+c_{3}=c_{1}+c_{3} \\
& y_{1}=y^{\prime}(0)=-2 c_{1} \sin (0)+2 c_{2} \cos (0)=2 c_{2}, \\
& y_{2}=y^{\prime \prime}(0)=-4 c_{1} \cos (0)-4 c_{2} \sin (0)=-4 c_{1}
\end{aligned}
$$

The solution of this system is

$$
c_{1}=-\frac{1}{4} y_{2}, \quad c_{2}=\frac{1}{2} y_{1}, \quad c_{3}=y_{0}+\frac{1}{4} y_{2}
$$

Therefore the solution of the general initial-value problem is

$$
\begin{aligned}
y & =-\frac{1}{4} y_{2} \cos (2 t)+\frac{1}{2} y_{1} \sin (2 t)+\left(y_{0}+\frac{1}{4} y_{2}\right) \\
& =y_{0}+y_{1} \frac{1}{2} \sin (2 t)+y_{2} \frac{1}{4}(1-\cos (2 t)) .
\end{aligned}
$$

We can read off from this that the natural fundamental set of solutions associated with the initial-time 0 for the operator $\mathrm{L}=\mathrm{D}^{3}+4 \mathrm{D}$ is

$$
N_{0}(t)=1, \quad N_{1}(t)=\frac{1}{2} \sin (2 t), \quad N_{2}(t)=\frac{1}{4}(1-\cos (2 t)) .
$$

(10) [8] Compute the Laplace transform of $f(t)=u(t-5) e^{-3 t}$ from its definition. (Here u is the unit step function.)
Solution. The definition of Laplace transform gives

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} u(t-5) e^{-3 t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{5}^{T} e^{-(s+3) t} \mathrm{~d} t
$$

When $s \leq-3$ this limit diverges to $+\infty$ because in that case we have for every $T>5$

$$
\int_{5}^{T} e^{-(s+3) t} \mathrm{~d} t \geq \int_{5}^{T} \mathrm{~d} t=T-5
$$

which clearly diverges to $+\infty$ as $T \rightarrow \infty$.
When $s>-3$ we have for every $T>5$

$$
\int_{5}^{T} e^{-(s+3) t} \mathrm{~d} t=-\left.\frac{e^{-(s+3) t}}{s+3}\right|_{5} ^{T}=-\frac{e^{-(s+3) T}}{s+3}+\frac{e^{-(s+3) 5}}{s+3}
$$

whereby

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty}\left[-\frac{e^{-(s+3) T}}{s+3}+\frac{e^{-(s+3) 5}}{s+3}\right]=\frac{e^{-(s+3) 5}}{s+3} \quad \text { for } s>-3 .
$$

Therefore the definition of the Laplace transform shows that

$$
\mathcal{L}[f](s)= \begin{cases}\frac{e^{-(s+3) 5}}{s+3} & \text { for } s>-3 \\ \text { undefined } & \text { for } s \leq-3\end{cases}
$$

(11) [12] Consider the following (old style) MATLAB commands.
\gg syms t s Y; $\mathrm{f}=\left[\right.$ 't^2 $2+$ heaviside $(\mathrm{t}-2)^{*}\left(4-\mathrm{t}^{\wedge} 2\right)-$ heaviside $\left.(\mathrm{t}-6)^{*} 4^{\prime}\right]$;
\gg diffeqn $=\operatorname{sym}\left({ }^{\prime} \mathrm{D}(\mathrm{D}(\mathrm{y}))(\mathrm{t})+6^{*} \mathrm{D}(\mathrm{y})(\mathrm{t})+34^{*} \mathrm{y}(\mathrm{t})={ }^{\prime} \mathrm{f}\right) ;$
\gg eqntrans $=$ laplace(diffeqn, $\mathrm{t}, \mathrm{s})$;
\gg algeqn $\left.\left.=\operatorname{subs}(\text { eqntrans, \{'laplace }(\mathrm{y}(\mathrm{t}), \mathrm{t}, \mathrm{s}), \mathrm{t}, \mathrm{s})^{\prime},{ }^{\prime} \mathrm{y}(0)^{\prime},{ }^{\prime} \mathrm{D}(\mathrm{y})(0)^{\prime}\right\},\{\mathrm{Y}, 4,-2\}\right) ;$
\gg ytrans $=$ simplify(solve(algeqn, Y));
$\gg y=$ ilaplace(ytrans, $s, t)$
(a) [4] Give the initial-value problem for $y(t)$ that is being solved.
(b) [8] Find the Laplace transform $Y(s)$ of the solution $y(t)$. (DO NOT take the inverse Laplace transform of $Y(s)$ to find $y(t)$, just solve for $Y(s)!$)
You may refer to the table on the last page.
Solution (a). The initial-value problem for $y(t)$ that is being solved is

$$
y^{\prime \prime}+6 y^{\prime}+34 y=f(t), \quad y(0)=4, \quad y^{\prime}(0)=-2,
$$

where the forcing $f(t)$ can be expressed either as the piecewise-defined function

$$
f(t)= \begin{cases}t^{2} & \text { for } 0 \leq t<2 \\ 4 & \text { for } 2 \leq t<6 \\ 0 & \text { for } 6 \leq t\end{cases}
$$

or in terms of the unit step function as

$$
f(t)=t^{2}+u(t-2)\left(4-t^{2}\right)-u(t-6) 4
$$

Solution (b). The Laplace transform of the initial-value problem is

$$
\mathcal{L}\left[y^{\prime \prime}\right](s)+6 \mathcal{L}\left[y^{\prime}\right](s)+34 \mathcal{L}[y](s)=\mathcal{L}[f](s) .
$$

Because

$$
\begin{aligned}
\mathcal{L}[y](s) & =Y(s) \\
\mathcal{L}\left[y^{\prime}\right](s) & =s \mathcal{L}[y](s)-y(0)=s Y(s)-4 \\
\mathcal{L}\left[y^{\prime \prime}\right](s) & =s \mathcal{L}\left[y^{\prime}\right](s)-y^{\prime}(0)=s^{2} Y(s)-4 s+2
\end{aligned}
$$

the Laplace transform of the initial-value problem becomes

$$
\left(s^{2} Y(s)-4 s+2\right)+6(s Y(s)-4)+34 Y(s)=\mathcal{L}[f](s)
$$

This simplifies to

$$
\left(s^{2}+6 s+34\right) Y(s)-4 s-22=\mathcal{L}[f](s),
$$

whereby

$$
Y(s)=\frac{1}{s^{2}+6 s+34}(4 s+22+\mathcal{L}[f](s))
$$

To compute $\mathcal{L}[f](s)$, we write $f(t)$ as

$$
\begin{aligned}
f(t) & =t^{2}+u(t-2)\left(4-t^{2}\right)-u(t-6) 4 \\
& =t^{2}+u(t-2) j_{1}(t-2)+u(t-6) j_{2}(t-6)
\end{aligned}
$$

where by setting $j_{1}(t-2)=4-t^{2}$ and $j_{2}(t-6)=-4$ we see by the shifty step method that

$$
j_{1}(t)=4-(t+2)^{2}=4-t^{2}-4 t-4=-t^{2}-4 t, \quad j_{2}(t)=-4
$$

Referring to the table on the last page, item 1 with $a=0$ and $n=0$, with $a=0$ and $n=1$, and with $a=0$ and $n=2$ shows that

$$
\mathcal{L}[1](s)=\frac{1}{s}, \quad \mathcal{L}[t](s)=\frac{1}{s^{2}}, \quad \mathcal{L}\left[t^{2}\right](s)=\frac{2}{s^{3}},
$$

whereby item 6 with $c=2$ and $j(t)=j_{1}(t)$ and with $c=6$ and $j(t)=j_{2}(t)$ shows that

$$
\begin{aligned}
& \mathcal{L}\left[u(t-2) j_{1}(t-2)\right](s)=e^{-2 s} \mathcal{L}\left[j_{1}\right](s)=-e^{-2 s} \mathcal{L}\left[t^{2}+4 t\right](s)=-e^{-2 s}\left(\frac{3}{s}-\frac{1}{s^{2}}\right), \\
& \mathcal{L}\left[u(t-6) j_{2}(t-6)\right](s)=e^{-6 s} \mathcal{L}\left[j_{2}\right](s)=-e^{-6 s} \mathcal{L}[6](s)=-e^{-6 s} \frac{6}{s}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathcal{L}[f](s) & =\mathcal{L}\left[t^{2}+u(t-2) j_{1}(t-2)+u(t-6) j_{2}(t-6)\right](s) \\
& =\frac{2}{s^{3}}-e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}\right)-e^{-6 s} \frac{4}{s} .
\end{aligned}
$$

Upon placing this result into the expression for $Y(s)$ found earlier, we obtain

$$
Y(s)=\frac{1}{s^{2}+6 s+34}\left(4 s+22+\frac{2}{s^{3}}-e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}\right)-e^{-6 s} \frac{4}{s}\right) .
$$

(12) [8] Find the inverse Laplace transform $\mathcal{L}^{-1}[X(s)](t)$ of the function

$$
X(s)=e^{-4 s} \frac{3 s+11}{s^{2}+6 s+13}
$$

You may refer to the table on the last page.
Solution. Referring to the table on the last page, item 6 with $c=4$ implies that

$$
\mathcal{L}^{-1}\left[e^{-4 s} J(s)\right]=u(t-4) j(t-4), \quad \text { where } \quad j(t)=\mathcal{L}^{-1}[J(s)](t)
$$

We apply this formula to

$$
J(s)=\frac{3 s+11}{s^{2}+6 s+13}
$$

Because $s^{2}+6 s+13=(s+3)^{2}+2^{2}$, we have the partial fraction identity

$$
J(s)=\frac{3 s+11}{s^{2}+6 s+13}=\frac{3(s+3)+2}{(s+3)^{2}+2^{2}}=3 \frac{s+3}{(s+3)^{2}+2^{2}}+\frac{2}{(s+3)^{2}+2^{2}} .
$$

Referring to the table on the last page, items 2 and 3 with $a=-3$ and $b=2$ imply that

$$
\mathcal{L}^{-1}\left[\frac{s+3}{(s+3)^{2}+2^{2}}\right]=e^{-3 t} \cos (2 t), \quad \mathcal{L}^{-1}\left[\frac{2}{(s+3)^{2}+2^{2}}\right]=e^{-3 t} \sin (2 t) .
$$

The above formulas and the linearity of the inverse Laplace transform yield

$$
\begin{aligned}
j(t) & =\mathcal{L}^{-1}[J(s)](t)=\mathcal{L}^{-1}\left[\frac{3 s+11}{s^{2}+6 s+13}\right](t) \\
& =\mathcal{L}^{-1}\left[3 \frac{s+3}{(s+3)^{2}+2^{2}}+\frac{2}{(s+3)^{2}+2^{2}}\right](t) \\
& =3 \mathcal{L}^{-1}\left[\frac{s+3}{(s+3)^{2}+2^{2}}\right](t)+\mathcal{L}^{-1}\left[\frac{2}{(s+3)^{2}+2^{2}}\right](t) \\
& =3 e^{-3 t} \cos (2 t)+e^{-3 t} \sin (2 t) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathcal{L}^{-1}[Y(s)](t) & =\mathcal{L}^{-1}\left[e^{-4 s} J(s)\right](t)=u(t-4) j(t-4) \\
& =u(t-4)\left(3 e^{-3(t-4)} \cos (t-4)+e^{-3(t-4)} \sin (t-4)\right)
\end{aligned}
$$

Table of Laplace Transforms

$$
\begin{array}{rlrl}
\mathcal{L}\left[t^{n} e^{a t}\right](s) & =\frac{n!}{(s-a)^{n+1}} & & \text { for } s>a . \\
\mathcal{L}\left[e^{a t} \cos (b t)\right](s) & =\frac{s-a}{(s-a)^{2}+b^{2}} & & \text { for } s>a . \\
\mathcal{L}\left[e^{a t} \sin (b t)\right](s) & =\frac{b}{(s-a)^{2}+b^{2}} & & \text { for } s>a . \\
\mathcal{L}\left[t^{n} j(t)\right](s) & =(-1)^{n} J^{(n)}(s) & & \text { where } J(s)=\mathcal{L}[j(t)](s) . \\
\mathcal{L}\left[e^{a t} j(t)\right](s) & =J(s-a) & & \text { where } J(s)=\mathcal{L}[j(t)](s) . \\
\mathcal{L}[u(t-c) j(t-c)](s) & =e^{-c s} J(s) & & \text { where } J(s)=\mathcal{L}[j(t)](s) \\
\mathcal{L}[\delta(t-c) h(t)](s) & =e^{-c s} h(c) & & \text { and } u \text { is the unit step function. } \\
& & \text { where } \delta \text { is the unit impluse. }
\end{array}
$$

