Third In-Class Exam Solutions
Math 246, Professor David Levermore
Tuesday, 24 April 2018

(1) [6] Recast the ordinary differential equation ¢’ = e¥y” + (y")* + cos(t® + y/) as a
first-order system of ordinary differential equations.

Solution. Because the equation is fourth order, the first-order system must have
dimension at least four. The simplest such first-order system is

d /

T = 3 ,  Where 2l y,,

dt | x3 Ty T3 Y
T4 e"'xy + (23)% + cos(t? + x9) T4 y"

2
(2) [10] Consider the vector-valued functions x;(t) = ( 4 > Xo(t) = ( t )

32
(a) [2] Compute the Wronskian Wr[xy, x2](%).
(b) [3] Find A(t) such that x;, X2 is a fundamental set of solutions to the system
x" = A(t)x wherever Wr[xy, x3(t) # 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wrx;, xo](t ( 1+t4)=4-(1—|—t4)—3t2-t2:4+t4.

Solution (b). Let W(t ( 14 t4)' Because W'(t) = A(t)¥(t), we have

-1
- 1 (0 2t 4 t?
All) =T (W (@E) " = <6t 4t3) (3t2 1+t
1 0 2t\ (14+¢ —*) 1 —6t> 8t
T4t \6t 483 —3t2 4 ) T 444 \6t—6t> 10t3) -

Solution (c). A general solution is

X(t) = erxa (t) + caxal(t) = 1 (31‘2> +o (1 f t4> |

Solution (d). By using the fundamental matrix W(¢) from part (b) we find that the
Green matrix is

. 4 2 4 2\
Gt = w06 = (g 1) (5 1] 0)

1 4 12 1+ st —g2
T 4pst \3t2 1+t —3s2 4

1 4+ 45 — 3t%s1 42 — 452
T A4 g4 \ 32+ 325t — 312 — 3tts? 44 4t — 328
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(3) [6] Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 26 liters and the second contains 19 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 2 liters per hour. At t = 0 there are 17 grams of salt in
the first tank and 31 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

Solution. Let Vi(t) and V5(t) be the volumes (lit) of brine in the first and second
tank at time ¢ hours. Let S1(¢) and Ss(t) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time ¢ are C4(t) = S;(¢t)/Vi(t) and
Cy(t) = So(t)/Va(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

5 gr/lit . Ci(t) gr/lit
6 lit/hr Vi(t) lit 8 lit/hr Va(t) lit
aweme | TOE o em | POE o g
3 lit/hr 7 lit/hr 2 lit/hr
Vi(0) = 26 lit Va(0) = 19 lit
S1(0) = 17 gr Sy(0) = 31 gr

We are asked to write down an initial-value problem that governs S;(t) and Sy(t).

The rates work out so there will be V;(t) = 26 + 2t liters of brine in the first tank
and Va(t) = 19 — ¢ liters in the second. Then Si(¢) and Sy(t) are governed by the
initial-value problem

dSl SQ Sl Sl

o1 g _ _ —1
AT T S T TR e kL 51(0) =17,
s S S S

2oLy 27 22, S5(0) = 31.

dt  26+2t 19—t 19—t
Your answer could be left in the above form. However, it can be simplified to

dSy 7 11

— =30 Sy — S S1(0) =17

a T T wr 1(0) =17,

d.S, 8 9

= — =31.

T TR I 5:(0) =3
Remark. This first-order system of differential equations is linear. Its coefficients
are undefined either at ¢ = —13 or at ¢ = 19 and are continuous elsewhere. Its forcing

is constant, so is continuous everywhere. Therefore the natural interval of definition
for the solution of this initial-value problem is (—13,19) because:

e the initial time ¢ = 0 is in (—13,19);

e all the coefficients and the forcing are continuous over (—13,19);

e two coefficients are undefined at ¢t = —13;

e two coefficients are undefined at ¢t = 19.
However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 19) because the word problem starts at ¢t = 0.



(4) [10] Solve the initial-value problem
S0-C 50 G-6)

Solution by Formula. The characteristic polynomial of A = (:411 _15) is
p(2) = 2 — tr(A)z + det(A) = 2* + 624+ 9 = (2 + 3)°.

This is a perfect square with © = —3. Then

e = eIt (A +3D)] =™ [((1) (1)> o (—24 —12)}

_ w12t
4t 1-2t) "

(Check that tr(A — 4I) = 0!) Therefore the solution of the initial-value problem is

w142t ) (2 24 4t
 UAT -3t 4
x(t) =ex =e (—4t 1—2t> (0)_6 (—St)'

(5) [6] Given that 2 is an eigenvalue of the matrix

0 —1 2
B=|[1 2 -3]|,
0 2 10

find all the eigenvectors of B associated with 2.

Solution. The eigenvectors of B associated with 2 are all nonzero vectors v such
that Bv = 2v. Equivalently, they are all nonzero vectors v such that (B —2I)v = 0,

which is
-2 -1 2 U1 0
1 0 -3 vl =10
0o 2 8 U3 0

The entries of v thereby satisfy the homogeneous linear algebraic system
—2v1 — vy + 203 =0,
U1 —3v3 =0,
29 + 8v3 = 0.

This system may be solved either by elimination or by row reduction. By either
method its general solution is found to be

v1 =3a, vy=—4da, v3=a, for any constant «.
Therefore the eigenvectors of B associated with 2 each have the form

3
al| —4 for some constant o # 0.
1



(6) [8] A 4 x 4 matrix C has the eigenpairs

1 1 1
1 ~1 —1
-1 1 ’ Il
~1 ~1 1

—_

95, 2,

—_ = =

a) Give an invertible matrix V and a diagonal matrix D such that ¢/© = VePV~1
g
(You do not have to compute either V=1 or ¢'©!)
(b) Give a fundamental matrix for the system x’ = Cx.

Solution (a). One choice for V and D is

1 1 1 1 50 0 0
1 1 -1 -1 02 0 0
V=11 1 1 |- D=1g0 -1 0
1 -1 -1 1 00 0 —4

Solution (b). Use the given eigenpairs to construct the real eigensolutions

1 1
x(t) = edt 1 , Xo(t) = et 1 ,
1 —1
1 —1
1 1
—1 _ —1
x3(t) =e " HE x4(t) = e 1
—1 1
Then a fundamental matrix for the system is
OOt Q2 et it
€5t €2t _e—t _e—4t
U(t) = (x1(t) xa(t) x3(t) x4(t)) = Ot 2 et it
€5t _€2t _e—t €—4t

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

1 1 1 et 0 0 0
1 -1 -1 0 e* 0 0
-1 1 -1 0 0 e 0

1
w(t) = Ve = | |
1 -1 -1 1 0 0 0 e

5t 2t et o4t

eSt e2t ot it
T ettt 2t et 4t

e5t 2t ot o4t



(7) [8] Find a real general solution of the system
d fz\ _ (-3 2 x
dt\y) \—-4 -7)\y/)"
Solution by Formula. The characteristic polynomial of A = (:i 2 ) is

p(z) = 2% —tr(A)z + det(A) = 2% + 102 + 29 = (2 + 5)* + 2°.
This is a sum of squares with 4 = —5 and v = 2. Then

sin(2t)

e =7 {cos(Qt)I + (A + 51)]

o (3 O) 52 (2 2)]

5t (cos(2t) + sin(2t) sin(2t) )
—2sin(2t) cos(2t) —sin(2t) ) -

(Check that tr(A + 5I) = 0!) Therefore a real general solution of the system is

w0 = e =™ (TN e (i Cean)

Solution by Eigen Methods. The characteristic polynomial of A = (:Z _27)
is
p(z) = 2% —tr(A)z + det(A) = 2° + 102 + 29 = (2 + 5)* + 2°.

The eigenvalues of A are the roots of this polynomial, which are —5+i2 and —5 — 2.
Consider the matrix

(242 2
A_(_5_12>I_(—4 —2—|—2’2>

After checking that the determinant of this matrix is zero, we can read off from its
second column that an eigenpair of A is

(_5 e <_1l+ Z)) '

(Another eigenpair is the complex conjugate of this one, but we will not need it.)
This eigenpair yields the complex-valued eigensolution

e 5t 1
x(t) =e <_1 N Z) (cos(2t) + isin(2t)) (_1 n Z)

_ Bt cos(2t) + isin(2t)

- ((cos(2t ) + isin(2t))( 1—1—2)

— ot ( cos(2t) + isin(2t) )
(— cos(2t) — sin(2t)) + i( cos(2t) — sin(2¢))



From the real and imaginary parts of this complex-valued eigensolution we can read
off that a fundamental set of real solutions is

xi(t) = e (—cos((;j(zt)sin(%)) o ()= (Cos(2ii)n<—22n(2t)) '

Therefore a real general solution is
I cos(2t) 5t sin(2t)
x(t) = cre (— cos(2t) — sin(2t) +C2e cos(2t) — sin(2t) ) -

(8) [8] Find a real general solution of the system
d fz\ _ (3 5\ (=
dt\y) \3 1)\y/)~

Solution by Eigen Methods. The characteristic polynomial of A = (g ?) is

p(z) =2 —tr(A)z +det(A) =2 — 4z — 12 = (2 — 6)(2 + 2).

The eigenvalues of A are the roots of this polynomial, which are —2 and 6. Consider

the matrices
5 5 -3 5
(33, aas (0.

After checking that the determinant of each matrix is zero, we can read off that

eigenpairs of A are
1 5
(= () (6)

Therefore a real general solution of the system is

X(t) = cye 2 (_11) ot (g) .

Solution by Formula. The characteristic polynomial of A = (g ?) is

p(z) = 22— tr(A)z + det(A) = 24y —12 = (z — 2)2 _ 42
This is a difference of squares with ¢ = 2 and v = 4. Then

sin};(llt) (A 21)]

ey )0 )

cosh(4¢) + § sinh(4¢) % sinh(4¢)

3 sinh(4t) cosh(4t) — % sinh(4¢)

eth = e {cosh(élt)l +

— €2t



(Check that tr(A — 2I) = 0!) Therefore a real general solution of the system is

(1) = oA cosh(4t) + ; sinh(4¢) 2 sinh(4t) 1
X(t) =e"c=
3 sinh(4¢) cosh(4t) — 1 sinh(4¢) o
cosh(4t) + ; sinh(4¢) 2 sinh(4t)
= ce + 0262t
3 sinh(4¢) cosh(4t) — 1 sinh(4t)

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator L = D? 4 4D.

Solution from Green Function. The operator L = D? + 4D has characteristic
polynomial

p(s) = s +4s = s(s* +4).
We have the partial-fraction identity

1 1 % _4113

p(s) 83 +4s _;+82+4'
Then from item 1 in the table with a = 0 and n = 0, and item 2 in the table with
a =0 and b = 2 we see that the Green function for the operator L = D3 4 4D is

o0 = 7|l =120 - ve| 2|

p(s) s 5% 4 22

=1-1—1cos(2t).
Because we see the characteristic polynomial as
p(s) = s> +0s* + 45+ 0,
the natural fundamental set is given by
Naft) = g(t) = 1 — Scos(21).
Ni(t) = Nj(t) + 0g(t) = 3 sin(2t),
No(t) = Ni(t) +4g(t) = cos(2t) + 4(1 — L cos(2t)) = 1.
Solution from General Initial-Value Problem. For the operator L = D3 + 4D
the general initial-value problem for initial-time 0 is

y'+4y =0,  y0)=v, ¥O0)=v, y'(0)=1y.
Its characteristic polynomial is
p(2) =22 + 4z = 2(2% +4) = 2(2* + 27),
which has roots i2, —i2 and 0. Therefore a real general solution is
y(t) = c1 cos(2t) + cosin(2t) + c3.
Because

y'(t) = —2c sin(2t) + 2¢5 cos(2t) , y"(t) = —4cy cos(2t) — 4eg sin(2t)



the general initial conditions yield the linear algebraic system
Yo = y(0) = ¢1 cos(0) 4 cosin(0) + ¢35 = ¢1 + ¢3,
y1 =4 (0) = —2¢; sin(0) + 2¢5 cos(0) = 2¢5,
Yo = 4" (0) = —4c; cos(0) — 4ep sin(0) = —4c; .

The solution of this system is
¢ = =11, ¢ = 35U, 3 =Yo+ Y2 -
Therefore the solution of the general initial-value problem is
y = —1y2 cos(2t) + Sy1 sin(2t) + (yo + 5v2)
= Yo + Y13 sin(2t) + yo1 (1 — cos(2t)) .

We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator L = D3 +4D is

No(t) =1,  Ny(t)=1isin(2t),  Ny(t)=

2

(1 —cos(2t)).

1
4

(10) [8] Compute the Laplace transform of f(t) = u(t — 5) e~ from its definition.
(Here u is the unit step function.)
Solution. The definition of Laplace transform gives
T T
L[f](s) = lim e Su(t —5)e ¥ dt = lim e~ e

T—o0 0 T—o0 5

When s < —3 this limit diverges to +00 because in that case we have for every T' > 5

T T
/ eIt qp > / dt=T -5,
5 5

which clearly diverges to +o00 as T" — oo.

When s > —3 we have for every T" > 5

! —(s+3)t 34 _ _6_(5+3)t r - _e—(5+3)T e~ (s+3)5
e dt = _ n ’
5 s+3 . s+ 3 s+ 3
whereby
. e~ (sH3IT  o=(s43)5 o—(s+3)5
E[f](s):Tlgrgo{— ST 3 + 3—{—3]: 3 for s > —3

Therefore the definition of the Laplace transform shows that
6—(3+3)5

LIfl(s) =14 s+3
undefined for s < —3.

for s > —3,



(11) [12] Consider the following (old style) MATLAB commands.

>>syms t s Y; f = ['t"2 + heaviside(t — 2)*(4 — t"2) — heaviside(t — 6)*4’];

>> diffeqn = sym('D(D(y))(t) + 6*D(y)(t) + 34*y(t) =" {);

>> eqntrans = laplace(diffeqn, t, s);

>> algeqn = subs(eqntrans, {’laplace(y(t),t,s),t,s)’, 'y(0)’, 'D(y)(0)’}, {Y, 4, —2});
>> ytrans = simplify(solve(algeqn, Y));

>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(¢) that is being solved.
(b) [8] Find the Laplace transform Y'(s) of the solution y(t). (DO NOT take the
inverse Laplace transform of Y'(s) to find y(t), just solve for Y (s)!)

You may refer to the table on the last page.
Solution (a). The initial-value problem for y(t) that is being solved is
y'+6y +34y=f(t), y(0)=4, y(0)=-2,
where the forcing f(t) can be expressed either as the piecewise-defined function
2 for0<t<2,
f)={4 for2<t<6,
0 for6<t,
or in terms of the unit step function as

f) =1 +u(t—2)(4 —t*) —u(t — 6)4.

Solution (b). The Laplace transform of the initial-value problem is
Lly"|(s) + 6L[y'](s) + 34Ly](s) = L[f](s) -

Because

Llyl(s) =Y (s),

Lly](s) = s LIy)(s) —y(0) = s Y (s) — 4,

Lly")(s) = s L[y'(s) — y'(0) = s’V (s) — 45 + 2,
the Laplace transform of the initial-value problem becomes

(s°Y(s) — 4s +2) + 6(sY (s) —4) + 34Y (s) = L[f](s) .
This simplifies to
(52 4+ 65+ 34)Y (s) — 4s — 22 = L[f](s)

whereby
1

Y= arerm

To compute L[f](s), we write f(t) as
f) =t* +u(t—2)(4 —t*) — u(t — 6)4

=12 Fu(t — 2)j1(t — 2) + u(t — 6)ja(t — 6),

(4s + 22+ L[f](s)) -
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where by setting ji(t — 2) = 4 — t* and j,(t — 6) = —4 we see by the shifty step
method that

Git) =4 —(t+2)* =41 — 4t —4 = —t* — 4¢, Go(t) = —4.

Referring to the table on the last page, item 1 with a = 0 and n = 0, with ¢ = 0 and
n =1, and with ¢ = 0 and n = 2 shows that

L =1, Ll =5 L) =3,
whereby item 6 with ¢ = 2 and j(¢) = ji(¢) and with ¢ = 6 and j(t) = ja(t) shows
that
. e et (31
Elult = 20t = 2)(9) = # L) = =L+ () =~ (2= 2
E[u(t —6)jo(t — 6)} (5) = e % L[j](s) = —e % L[6](s) = —6_652 )

Therefore
LIFI(s) = L[+ ult — 2)js(t - 2) + ult - 6)jat — 6)] (5

2 —2s 2 4 —684
8 (—+—)— P

Upon placing this result into the expression for Y'(s) found earlier, we obtain

1 2 2 4 4
Vis)= —— (ds+224+ 2 —e (2 L2 ) o2
(s) s2+6s+34( sTeT e (53 * 32) ‘ 3)

(12) [8] Find the inverse Laplace transform £71[X (s)](¢) of the function

3s+ 11
s2 4+ 6s+ 13"
You may refer to the table on the last page.

X(s)=e"

Solution. Referring to the table on the last page, item 6 with ¢ = 4 implies that
L7 e ™ J(s)] = ut —4)j(t—4), where  j(t) = L71[J(s)](¢).
We apply this formula to

3s+11
J(s) = —5—FT—=.
(5) s2 4+ 6s+ 13
Because s* + 6s + 13 = (s + 3)% + 22, we have the partial fraction identity
J(s) = 3s4+11  3(s+3)+2 s+3 N 2
82465+ 13  (s+3)24+22 T (s+3)2422  (s+3)2422°
Referring to the table on the last page, items 2 and 3 with a = —3 and b = 2 imply
that
5+ 3 2
L ————| =™ 2t L7 ————| =e¥sin(20).
[(5+3)2+221 e cos(2t), (s+3)2+22 e sin(2)



The above formulas and the linearity of the inverse Laplace transform yield
3s + 11
j(t)=L"" =L ——=|(t
i = £l = £ S o
5+ 3 n 2
(s+3)2+22  (s+3)%+ 22
s+3 2
" W) +L—— (¢
(S+3)2+22]()+ [(s+3)2+22]()
= 3e % cos(2t) + e ' sin(2t) .

=L [3 ] ()

=371 {

Therefore
LY ()](8) = £ e T(5)](E) = ult — )it - 4)

=u(t —4) (36’3(t’4) cos(t —4) + e 3 gsin(t — 4)) :

Table of Laplace Transforms

n!

£lee)(s) = =gy for s > a.
L[e™ cos(bt)](s) = ﬁ for s > a.
Llesin0)(s) = ;= al;z e for s > a.
L["j(6))(s) = (=1)"T"(s) where J(s) = L[j(1)](s)
Lle"j(1))(s) = J(s — a) where J(s) = L[j(t)](s)
Llu(t —c)j(t = o)](s) = e *J(s) where J(s) = L[j(t)](s)

and v is the unit step function .
L6t — c)h(t)](s) = e “h(c) where 0 is the unit impluse .
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