Third In-Class Exam

Math 246, Professor David Levermore
Tuesday, 21 November 2017

Your Name: \qquad
UMD SID: \qquad
Discussion Instructor (circle one):
Yan Tay Jing Zhou Discussion Time (circle one): 8:00 9:00 10:00

No books, notes, calculators, or any electronic devices. If you need more space to answer a problem then use the back of one of these pages. Clearly indicate where your answer to each part of every problem is located. Give your reasoning for full credit. Any work that you do not want to be considered should be crossed out. Good luck!

University Honor Pledge: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature:

Problem 1: \qquad /6

Problem 2: \qquad /10

Problem 3: \qquad /6

Problem 4: \qquad /10

Problem 5: \qquad / 6

Problem 6: \qquad /8

Problem 7: \qquad $/ 8$

Problem 8: \qquad /8

Problem 9: \qquad /10

Problem 10: \qquad /8

Problem 11: \qquad /12

Problem 12: \qquad /8

Total Score: \qquad /100

Grade: \qquad

Name:

\qquad
(1) [6] Recast the ordinary differential equation $v^{\prime \prime \prime \prime}=\cos (v) v^{\prime \prime \prime}+\left(v^{\prime \prime}\right)^{4}+\sin \left(t^{2}+v^{\prime}\right)$ as a first-order system of ordinary differential equations.
(2) [10] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{4}}{1}, \mathbf{x}_{2}(t)=\binom{-e^{t}}{e^{t}}$.
(a) [2] Compute the Wronskian $\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.
(b) [3] Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system $\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x}$ wherever $\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Name:

\qquad
(3) [6] Two interconnected tanks are filled with brine (salt water). At $t=0$ the first tank contains 23 liters and the second contains 32 liters. Brine with a salt concentration of 8 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine flows from the first tank into the second at 7 liters per hour, from the second into the first at 5 liters per hour, from the first into a drain at 3 liter per hour, and from the second into a drain at 4 liters per hour. At $t=0$ there are 17 grams of salt in the first tank and 29 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
(4) [10] Solve the initial-value problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{cc}
2 & -1 \\
4 & 6
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{0}{3}
$$

Name:

\qquad
(5) [6] Given that 3 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
4 & 0 & -3 \\
0 & 5 & 4 \\
2 & 2 & 1
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 3.
(6) $[8]$ A 4×4 matrix \mathbf{A} has the eigenpairs

$$
\left(3,\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right), \quad\left(4,\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)\right), \quad\left(-1, \quad\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)\right), \quad\left(-2, \quad\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)\right)
$$

(a) Give an invertible matrix \mathbf{V} and a diagonal matrix \mathbf{D} such that $e^{t \mathbf{A}}=\mathbf{V} e^{t \mathbf{D}} \mathbf{V}^{-1}$. (You do not have to compute either \mathbf{V}^{-1} or $e^{t \mathbf{A}}$!)
(b) Give a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A x}$.

Name:

\qquad
(7) [8] Find a real general solution of the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{ll}
0 & 2 \\
5 & 3
\end{array}\right)\binom{x}{y} .
$$

(8) [8] Find a real general solution of the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{cc}
-4 & 1 \\
-5 & -2
\end{array}\right)\binom{x}{y} .
$$

Name:

\qquad
(9) [10] Sketch the phase-plane portrait for each of the systems $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ from the previous two problems. Indicate typical orbits. Identify the type of this phase-plane portrait. Give a reason why the origin is either attracting, stable, unstable, or repelling.
(a) $\mathbf{A}=\left(\begin{array}{ll}0 & 2 \\ 5 & 3\end{array}\right)$,
(b) $\mathbf{A}=\left(\begin{array}{cc}-4 & 1 \\ -5 & -2\end{array}\right)$.
(10) [8] Compute the Laplace transform of $f(t)=u(t-2) e^{-4 t}$ from its definition. (Here u is the unit step function.)

Name: \qquad
(11) [12] Consider the following MATLAB commands.

```
>> syms t s Y; f = ['t + heaviside (t - 3)*(6 - t) - heaviside(t - 6)* *'];
>> diffeqn = sym('D(D(y))(t) + 4*D(y)(t)+20* y(t)=' f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {'laplace(y(t),t,s),t,s)', 'y(0)', 'D(y)(0)'},{Y, -2, 5});
>> ytrans = simplify(solve(algeqn, Y));
>>y = ilaplace(ytrans, s, t)
```

(a) [4] Give the initial-value problem for $y(t)$ that is being solved.
(b) [8] Find the Laplace transform $Y(s)$ of the solution $y(t)$. (DO NOT take the inverse Laplace transform of $Y(s)$ to find $y(t)$, just solve for $Y(s)!$)
You may refer to the table on the last page.
(12) [8] Find the inverse Laplace transform $\mathcal{L}^{-1}[Y(s)](t)$ of the function

$$
Y(s)=e^{-3 s} \frac{3 s+10}{s^{2}+4 s+5}
$$

You may refer to the table on the last page.

Name:

\qquad
Workspace (Give the number of the problem being worked!)

A Short Table of Laplace Transforms

$$
\begin{aligned}
\mathcal{L}\left[t^{n} e^{a t}\right](s) & =\frac{n!}{(s-a)^{n+1}} & & \text { for } s>a . \\
\mathcal{L}\left[e^{a t} \cos (b t)\right](s) & =\frac{s-a}{(s-a)^{2}+b^{2}} & & \text { for } s>a . \\
\mathcal{L}\left[e^{a t} \sin (b t)\right](s) & =\frac{b}{(s-a)^{2}+b^{2}} & & \text { for } s>a . \\
\mathcal{L}\left[t^{n} j(t)\right](s) & =(-1)^{n} J^{(n)}(s) & & \text { where } J(s)=\mathcal{L}[j(t)](s) . \\
\mathcal{L}\left[e^{a t} j(t)\right](s) & =J(s-a) & & \text { where } J(s)=\mathcal{L}[j(t)](s) . \\
\mathcal{L}[u(t-c) j(t-c)](s) & =e^{-c s} J(s) & & \text { where } J(s)=\mathcal{L}[j(t)](s)
\end{aligned}
$$

