Third In-Class Exam Solutions
Math 246, Professor David Levermore
Tuesday, 21 November 2017

(1) [6] Recast the ordinary differential equation v = cos(v)v” + (v”)* + sin(t? + ') as
a first-order system of ordinary differential equations.

Solution. Because the equation is fourth order, the first-order system must have
dimension at least four. The simplest such first-order system is
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(2) [10] Consider the vector-valued functions x;(t) = (tl), Xa(t) = < ef )

(a) [2] Compute the Wronskian Wr[xy, x2](t).

(b) [3] Find A(t) such that x;, x5 is a fundamental set of solutions to the system
x" = A(t)x wherever Wr[xy, X3](t) # 0.

(c) [2] Give a general solution to the system found in part (b).

(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

t4

Wr[x1, Xs](t) = det ( 1

ot
ef) =tt el —1-(—e") = (' +1)e".
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Solution (b). Let W(t) = (tl ; ) Because W'(t) = A(t)®(t), we have
- (A —et\ [t —et\ !
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Solution (c). A general solution is
t —et
X(t) = clxl(t) + 02X2<t) =C (1) + co ( et ) .

Solution (d). By using the fundamental matrix W(¢) from part (b) we find that the
Green matrix is

cu-somr'= ()7 )
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(3) [6] Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 23 liters and the second contains 32 liters. Brine with a salt concentration
of 8 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 7 liters per hour, from the second into
the first at 5 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 4 liters per hour. At t = 0 there are 17 grams of salt in
the first tank and 29 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

Solution. Let Vi(t) and V5(t) be the volumes (lit) of brine in the first and second
tank at time ¢ hours. Let S;(t) and Ss(t) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time ¢ are C(t) = S;(t)/Vi(t) and
Cy(t) = So(t)/Va(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

8 gr/lit C4(t) gr/lit

. — .
6 lit/hr Vi(t) lit 7 lit/hr Va(t) lit
aweme | TOE o eme | POE oy g
3 lit/hr 5 lit/hr 4 it /hr
VA (0) = 23 lit V5(0) = 32 lit
S1(0) =17 gr S5(0) =29 gr

We are asked to write down an initial-value problem that governs Si(t) and Sa(t).
The rates work out so there will be Vi (t) = 23 + ¢ liters of brine in the first tank
and Va(t) = 32 — 2t liters in the second. Then S;(t) and Sy(t) are governed by the

initial-value problem
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Your answer could be left in the above form. However, it can be simplified to

dSy 5 10
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dS, 7 9

= — =29.

@ B m—m 52(0) =29
Remark. This first-order system of differential equations is linear. Its coefficients
are undefined either at ¢ = —23 or at ¢ = 16 and are continuous elsewhere. Its forcing

is constant, so is continuous everywhere. Therefore the natural interval of definition
for the solution of this initial-value problem is (—23,16) because:

e the initial time ¢ = 0 is in (—23, 16);

e all the coefficients and the forcing are continuous over (—23, 16);

e two coefficients are undefined at ¢t = —23;

e two coefficients are undefined at ¢ = 16.
However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 16) because the word problem starts at ¢t = 0.



(4) [10] Solve the initial-value problem
d fz\ _ (2 -1\ (= z(0)\ _ (0
dt\y) \4 6 /)\y)’ y(0))  \3)°
. . : 2 —1)\.
Solution. The characteristic polynomial of A = ( i 6 ) is

p(z) = 2% —tr(A)z + det(A) = 2> — 82 + 16 = (2 — 4)*.

The eigenvalues of A are the roots of this polynomial, which is the double root 4.
Then

A _ _a w10 2 —1\] _ u(1-2t -t
et =elllHt(A—dl)]=e [(0 1)“(4 2)]_6 ( At 1+2t>'

(Check that tr(A — 4I) = 0!) Therefore the solution of the initial-value problem is

s w12t N[O\ _ (-3
x(t) = ex = < 4t 1+2t> (3)‘6 (3+6t)'

(5) [6] Given that 3 is an eigenvalue of the matrix

40 -3
A=|05 4|,
2 2 1

find all the eigenvectors of A associated with 3.

Solution. The eigenvectors of A associated with 3 are all nonzero vectors v such
that Av = 3v. Equivalently, they are all nonzero vectors v such that (A —3I)v = 0,

which is
1 0 -3 V1 0
0 2 4 v | =10
2 2 =2 U3 0
The entries of v thereby satisfy the homogeneous linear algebraic system
U1 — 3U3 =0 3
2?}2 + 41)3 =0 s

201+2U2—203:0.

This system may be solved either by elimination or by row reduction. By either
method its general solution is found to be

v =3a, V= —2«a, v3=a, for any constant .
Therefore the eigenvectors of A associated with 3 each have the form

3
al —2 for some constant a # 0.
1



(6) [8] A 4 x 4 matrix A has the eigenpairs

1 1 0 -1
1 0 1 1
37 1 ) 47 -1 ) _17 0 ) _27 -1
1 0 —1 1

(a) Give an invertible matrix V and a diagonal matrix D such that e!4 = VePV 1L
(You do not have to compute either V=1 or ¢'Al)
(b) Give a fundamental matrix for the system x’ = Ax.

Solution (a). One choice for V and D is

1 1 0 -1 30 0 0
1 0 1 1 04 0 0
V=11 1 o 1| D=1g0 1 0
1 0 -1 1 00 0 -2

1 1
xat) = | 1|, o) = | "]
1 0
0 —1
_ 1 _ 1
x3(t) = e " E xy(t) =e 1
-1 1
Then a fundamental matrix for the system is
o3ttt 0 —e2
€3t 0 e—t e—?t
W) = () %) x0 w®)=|% % 5
o3t 0 et o2

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

1 1 0 -1\ /e* 0 0 0
o |1 0 1 1 0 ¢ 0 0
TH=VeT =11 1 o 1|0 0 et o
1 0 -1 1 0 0 0 e

o3t it 0 o2

63t O eft 6721‘/

- ettt 0 e 2

B0 _et g2



(7) [8] Find a real general solution of the system
d fz\ _ (0 2\ (x
dt\y) \b 3)\y/"~
. . . 0 2\ .
Solution. The characteristic polynomial of A = (5 3) is
p(z) =2 —tr(A)z +det(A) = 2> - 32— 10 = (2 — 5)(2 + 2) .

The eigenvalues of A are the roots of this polynomial, which are —2 and 5. Consider

the matrices
2 2 -5 2
v (B3, aas(72).

After checking that the determinant of each matrix is zero, we can read off from their
first columns that eigenpairs of A are

(= () (6)

Therefore a real general solution of the system is

x(t) = cie™ <_11) + coe™ (g) .

Alternative Solution. The characteristic polynomial of A = (g g) is

p(z) =2 —tr(A)z +det(A) = 2> - 32— 10 = (2 = 5)(2 + 2) .

The eigenvalues of A are the roots of this polynomial, which are —2 and 5, which are
%—%and%+%. Then

smh(% )

A = 3t {cosh( I+

]

sinh(Zt) /_3
= it [cosh (1 O) + 7(2 ) ( 52 g }
3 2

3, cosh(3t) — 2 sinh(31) 2 sinh($t)
— g2t
L sinh(%1) cosh(%t) 4 2 sinh(%¢)
(Check that tr(A — 2I) = 0!) Therefore a real general solution of the system is
cosh(Zt) — 2 sinh(Zt) 2 sinh(1¢) ¢
x(t) = ethc = g3t 2 ’ 2 ’ 2
Y sinh(%t) cosh(%t) + 2sinh(Zt) ) \ e

3
3¢
ciez + coe
10 (7
+ sinh(5t)

3
7
cosh(5t) — 2 sinh(3t) 3, ( 2 sinh(31)
2



(8) [8] Find a real general solution of the system
dfz\ _ (-4 1 x
dt \y) \-5 =2 y) -

Solution. The characteristic polynomial of A = (:g _12> is

p(z) = 2% —tr(A)z + det(A) = 22 + 62+ 13 = (2 — 3)* + 22,

The eigenvalues of A are the roots of this polynomial, which are —3+i2 and —3 — 2.
Then

sin;Qt) (A + 31)}

= {cos(?t) (é (1)) + @ (:é D]

g (cos(2t) — 5 sin(2t) 1 sin(2t)
—° —2sin(2t) cos(2t) + 3 sin(2t)

e =73 {cos(?t)l +

(Check that tr(A + 3I) = 0!) Therefore a real general solution of the system is

AL 3 (cos(2t) — 3 sin(2t) _3t < sin(2t)
x(t) = eTe=ce < —2sin(2t) +ose cos(2t) + 3sin(2t) ) -

Alternative Solution. The characteristic polynomial of A = (:g _12) is

p(2) = 22 —tr(A)z +det(A) = 2 + 62 + 13 = (2 — 3)* +22.

The eigenvalues of A are the roots of this polynomial, which are —3+i2 and —3 — 2.
Consider the matrix

e (142 1
A_<_3_12)I_< -5 1+z2>

After checking that the determinant of this matrix is zero, we can read off from its
second column that an eigenpair of A is

(v (1)

(Another eigenpair is the complex conjugate of this one, but we will not need it.)
This eigenpair yields the complex-valued eigensolution

R ET I 3t 1
x(t) =e (1 n 22) (cos(2t) + isin(2t)) (1 + 2.2)
_ Bt cos(2t) + isin(2t)
—° (cos(2t) +isin(2t)) (1 +i2)
)

3y cos(2t) + i sm(2t)
—° (cos(2t) — 2sin(2t)) + (2 cos(2t) + sin(2t)) ) -
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From the real and imaginary parts of this complex-valued eigensolution we can read
off that a fundamental set of real solutions is

x(t) = e (cos(ztc)oi%ts)in(zt)) o )= (2 cos(;itl)l(—l%tgin(%)) :

Therefore a real general solution is

x(t) = cre™ (cos(2t(soi<22ts)in(2t)> +epe™ (2 cos(;itr)l(itgin(%)) '

(9) [10] Sketch the phase-plane portrait for each of the systems x" = Ax from the previous
two problems. Indicate typical orbits. Identify the type of this phase-plane portrait.
Give a reason why the origin is either attracting, stable, unstable, or repelling.

wa=(33). ma-(73 L)

Solution (a). Because the characteristic polynomial of A is p(z) = (2+2)(z—5), the
eigenvalues of A are —2 and 5. Because these eigenvalues are real and have opposite
sign, the phase-plane portrait is a saddle. Therefore the origin is unstable, but not
repelling. There are real eigenpairs (see the solution to Problem 7 for details)

() 6)

Therefore you should sketch eigensolution orbits that approach the origin along the

line y = —x and eigensolution orbits that emerge from the origin along the line
y = gx You should sketch one representative orbit in each of the four regions
separated by the eigensolution orbits. Each of these four orbits asymptotes to the
line y = —x as t — —oo and asymptotes to the line y = gx as t — oQ.

Solution (b). Because the characteristic polynomial of A is p(z) = (2 +3)? +4, the
eigenvalues of A are —3 +12 and —3 — 2. Because these eigenvalues are a conjugate
pair with negative real part, the phase-plane portrait is a spiral sink. Because ag; =
—5 < 0, the right-hand rule says that it is a clockwise spiral sink. Therefore the
origin is attracting. There are no real eigenpairs, so there are no eigensolution orbits
to sketch. The phase portrait should indicate a family of clockwise spiral orbits that
approach the origin.

(10) [8] Compute the Laplace transform of f(t) = u(t — 2) e~ from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

T T
L[f](s) = lim e Su(t —2)e " dt = lim e~ (st gt

T—oo J T—oo [q

When s < —4 this limit diverges to +00 because in that case we have for every 7" > 2

T T
/ e 5Tt 4 > / dt =T -2,
2 2

which clearly diverges to +o00 as T" — oc.



When s > —4 we have for every T > 2

T e—(s+a)t | T e (T —(s+4)2
/ ~rl g = =— + ,
9 s+4 |, s+4 s+4
whereby
. e—(s+4)T 6_(S+4)2 e—(s+4)2
E[f](s):Th_r&[— P + s+4}: I for s > —4.

Therefore the definition of the Laplace transform shows that
—(s+4)2
e

L[fl(s) = s+4
undefined for s < —4.

for s > —4,

(11) [12] Consider the following MATLAB commands.

>>syms t s Y; f = ['t + heaviside(t — 3)*(6 — t) — heaviside(t — 6)*6’];

>> diffeqn = sym('D(D(y))(t) + 4*D(y)(t) 4+ 20*y(t) =" f);

>> eqntrans = laplace(diffeqn, t, s);

>> algeqn = subs(equtrans, {’laplace(y(t),t,3),t,8)’, 'y(0)’, 'D(y)(0)’}, {Y, =2, 5});
>> ytrans = simplify(solve(algeqn, Y));

>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(t) that is being solved.
(b) [8] Find the Laplace transform Y'(s) of the solution y(t). (DO NOT take the
inverse Laplace transform of Y'(s) to find y(), just solve for Y (s)!)

You may refer to the table on the last page.
Solution (a). The initial-value problem for y(t) that is being solved is
v+ 4y +20y = f(t),  y(0)=-2, ¢(0)=5,
where the forcing f(t) can be expressed either as the piecewise-defined function
t for0<t<3,
fA)=<6 for3<t<6,
0 for6<t,
or in terms of the unit step function as f(t) =t + u(t — 3)(6 — t) — u(t — 6)6.
Solution (b). The Laplace transform of the initial-value problem is
LIY)(s) +4L[Y)(5) + 20L[y)(s) = LIF](s)
Because
Llyl(s) =Y (s),
L[y](s) = s L[y|(s) —y(0) = sY(s) + 2,
Lly")(s) = s LY(s) = y'(0) = s°Y(s) + 25 = 5,
the Laplace transform of the initial-value problem becomes
(s°Y (s) +2s — 5) +4(sY(s) + 2) +20Y (s) = L[f](s) .



This simplifies to
(s* +4s +20)Y (s) + 25 + 3 = L[f](s),

whereby
1

Y= e
To compute L[f](s), we write f(t) as
ft)=t+u(t—3)(6—1t) —u(t—6)6
=t+u(t —3)j1(t = 3) + u(t — 6)j2(t — 6),
where by setting j1(t —3) =6 — t and js(t — 6) = —6 we see that
7)) =6—(t+3)=3—t¢, Ja(t) = —6.

Referring to the table on the last page, item 1 with a = 0 and n = 0 and with a =0
and n = 1 shows that

(— 25 — 3+£[f](s)).

L) =1 L) = 5,
whereby item 6 with ¢ = 3 and j(¢) = j1(t) and with ¢ = 3 and j(t) = j2(t) shows
that
Llu(t = 3)ji(t = 3)](s) = e L[] (s) = e FL[B —t](s) =™ (% — 812) :
Llu(t = 6)ja(t — 6)](s) = e Ljs](s) = —e~L[6](s) = _6_682

Therefore

LIf1(s) = L[t + u(t — 3)j1(t — 3) + u(t — 6)2(t — 6)](s)

Upon placing this result into the expression for Y'(s) found earlier, we obtain
1 1 3 1 6
Y = - | —925—-3 - -3s <~ ) _ ,—6s7 ]
(5) 52+48+20( ° +32+6 (s 32) ‘ s)

(12) [8] Find the inverse Laplace transform £7[Y (s)](¢) of the function

3, 925+ 10
s24+4s+5"
You may refer to the table on the last page.

Y(s)=e

Solution. Referring to the table on the last page, item 6 with ¢ = 3 implies that
L7 e J(s)] = u(t—3)j(t—3), where  j(t) = L7[J(s)](¢).
We apply this formula to

3s+ 10

J<S):sz+43—|—5'
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Because s? +4s +5 = (s + 2)? + 1, we have the partial fraction identity

3s+10  3(s+2)+4

s+ 2 1

<5)232+4s+5_ (s+2)2+1

Referring to the table on the last page, items 2 and 3 with a = —2 and b = 1 imply

that
s+2

] e,

“|erer

(s+2)2+1 (s+2)2+1"

} = e ?sin(t).

The above formulas and the linearity of the inverse Laplace transform yield

i = £l = | S o
-1 542 1
- {3(5+2)2+1 <s+2>2+1}(t)

s+ 2

S [ (GRS Tl [ [0

= 3¢ * cos(t) + de ' sin(t) .

Therefore

LY ($)](#) = £ 5T ()]() = ult - 3)j(t — 3)
= u(t — 3) (36’2(“3) cos(t — 3) + 4e 23 sin(t — 3)) :

A Short Table of Laplace Transforms

L[t"e"](s) = #
£[€at COS(bt)](S) = ﬁ
E[eat sin(bt)](s) = (s—aﬁ

LI (0] (s) = (~1)"T™(s)
Lle™j(8))(s) = J(s —a)
Llult = )j(t — ))(s) = e (s)

for s >a.

for s > a.

for s > a.
where J(s) = L[j(t)](s) .
where J(s) = L[j(1)](s) .
where J(s) = L[j(t)](s)

and w is the unit step function.



