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(1) [4] Give the interval of definition for the solution of the initial-value problem

u′′′ − sin(3t)

4 + t
u′′ +

5 + t

5− t
u =

e−t

7 + t
, u(2) = u′(2) = u′′(2) = −3 .

Solution. The equation is linear and is already in normal form. Notice the following.
� The coefficient of u′′ is undefined at t = −4 and is continuous elsewhere.
� The coefficient of u is undefined at t = 5 and is continuous elsewhere.
� The forcing is undefined at t = −7 and is continuous elsewhere.

Plotting these points along with the inital time t = 2 on a time-line gives

——-◦——————◦————————————-•——————◦——→ t
−7 −4 2 5

Therefore the interval of definition is (−4, 5) because:
• the initial time t = 2 is in (−4, 5);
• all the coefficients and the forcing are continuous over (−4, 5);
• the coefficient of u′′ is undefined at t = −4;
• the coefficient of u is undefined at t = 5.

Remark. All four reasons must be given for full credit.
◦ The first two reasons are why a (unique) solution exists over the interval (−4, 5).
◦ The last two reasons are why this solution does not exist over a larger interval.

(2) [12] Let L be a linear ordinary differential operator with constant coefficients. Sup-
pose that all the roots of its characteristic polynomial (listed with their multiplicities)
are −2 + i5, −2 + i5, −2− i5, −2− i5, i7, −i7, −3, −3, 4, 0, 0, 0.
(a) [2] Give the order of L.
(b) [10] Give a real general solution of the homogeneous equation Ly = 0.

Solution (a). Because there are 12 roots listed, the degree of the characteristic
polynomial must be 12, whereby the order of L is 12.

Solution (b). A fundamental set of twelve real-valued solutions is built as follows.
� The conjugate pair of double roots −2± i5 contributes

e−2t cos(5t) , e−2t sin(5t) , t e−2t cos(5t) , and t e−2t sin(3t) .

� The conjugate pair of simple roots ±i7 contributes

cos(7t) , and sin(7t) .

� The double real root −3 contributes e−3t and t e−3t.
� The simple real root 4 contributes e4t.
� The triple real root 0 contributes 1, t, and t2.

Therefore a real general solution of the homogeneous equation Ly = 0 is

y = c1e
−2t cos(5t) + c2e

−2t sin(5t) + c3t e
−2t cos(5t) + c4t e

−2t sin(5t)

+ c5 cos(7t) + c6 sin(7t) + c7e
−3t + c8t e

−3t + c9e
4t + c10 + c11t+ c12t

2 .
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(3) [4] Suppose that V1(t), V2(t), and V3(t) are solutions of the differential equation

v′′′ − 2v′′ − cos(4t)v′ + (1 + t2)v = 0 ,

Suppose we know that Wr[V1, V2, V3](0) = 3. Find Wr[V1, V2, V3](t).

Solution. The Abel Theorem says that w(t) = Wr[V1, V2, V3](t) satisfies w′−2w = 0.
It follows that w(t) = ce2t for some c. Because w(0) = Wr[V1, V2, V3](0) = 3, this
initial condition implies that w(0) = ce2·0 = 3, whereby c = 3. Therefore w(t) = 3e2t,
which means that

Wr[V1, V2, V3](t) = 3e2t .

(4) [12] The functions cos(4t) and sin(4t) are a fundamental set of solutions to ẍ+16x = 0.
(a) [9] Solve the general initial-value problem

ẍ+ 16x = 0 , x(0) = x0 , ẋ(0) = x1 .

(b) [3] Find the associated natural fundamental set of solutions to ẍ+ 16x = 0.

Solution (a). Because we are told that cos(4t) and sin(4t) constitute a fundamental
set of solutions to ẍ+ 16x = 0, we know that a general solution is

x(t) = c1 cos(4t) + c2 sin(4t) .

Because
ẋ(t) = −4c1 sin(4t) + 4c2 cos(4t) ,

when the general initial conditions are imposed, we find that

x(0) = c1 = x0 , ẋ(0) = 4c2 = x1 .

These relations imply that c1 = x0 and c2 = 1
4
x1. Therefore the solution of the

general initial-value problem is

x(t) = x0 cos(4t) + x1
1
4

sin(4t) .

Solution (b). The natural fundamental set of solutions associated with t = 0 is read
off as the functions multiplying x0 and x1 in the solution of the general initial-value
problem. These are

N0(t) = cos(4t) , N1(t) = 1
4

sin(4t) .

(5) [8] What answer will be produced by the following Matlab commands?

>> ode = ’D2y – 6*Dy + 18*y = 18*exp(3*t)’;
>> dsolve(ode, ’t’)

ans =

Solution. The commands ask Matlab for a real general solution of the equation

D2y − 6Dy + 18y = 18e3t , where D =
d

dt
.

While your answer did not have to be given in Matlab format, Matlab will produce
something equivalent to

2*exp(3*t) + C1*exp(3*t)*cos(3*t) + C2*exp(3*t)*sin(3*t)



3

This can be seen as follows. This is a nonhomogeneous linear equation for y(t) with
constant coefficients. The characteristic polynomial is

p(z) = z2 − 6z + 18 = (z − 3)2 + 9 = (z − 3)2 + 32 .

It has the conjugate pair of roots 3 ± i3. A real general solution of the associated
homogeneous problem is

yH(t) = c1e
3t cos(3t) + c2e

3t sin(3t) .

The forcing 18e3t has degree d = 0, characteristic µ+ iν = 3, and multiplicity m = 0.
A particular solution yP (t) can be found by using either Key Identity Evaluations,
the Zero Degree Formula, or Undetermined Coefficients. Below we show that each
of these methods gives the particular solution yP (t) = 2e3t. Therefore a real general
solution is

y = c1e
3t cos(3t) + c2e

3t sin(2t) + 2e3t .

Up to notational differences, this is the answer that Matlab produces.

Key Indentity Evaluations. Because m+ d = m = 0, we can simply evaluate the
Key Identity at z = µ+ iν = 3, to find

L(e3t) = p(3)e3t = (32 − 6 · 3 + 18)e3t = 9e3t .

Multiply this by 2 to obtain L(2e3t) = 18e3t. Hence, yP (t) = 2e3t.

Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

yP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 18e3t and p(z) = z2−6z+18, so that µ+iν = 3, α−iβ = 18,
and m = 0, whereby

yP (t) = e3t
18

p(3)
=

18

32 − 6 · 3 + 18
e3t =

18

9
e3t = 2e3t .

Undetermined Coefficients. Because m + d = m = 0 and µ + iν = 3, there is a
particular solution in the form

yP (t) = Ae3t .

Because

y′P (t) = 3Ae3t , y′′P (t) = 9Ae3t ,

we see that

LyP (t) = y′′P (t)− 6y′P (t) + 18yP (t) = [9Ae3t]− 6[3Ae3t] + 18[Ae3t] = 9Ae3t .

Setting LyP (t) = 9Ae3t = 18e3t, we see that A = 2. Hence, yP (t) = 2e3t.
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(6) [8] Compute the Green function g(t) associated with the differential operator

D2 + 6D + 10 , where D =
d

dt
.

Solution. The Green function g(t) satisfies

D2g + 6Dg + 10g = 0 , g(0) = 0 , g′(0) = 1 .

The characteristic polynomial is

p(z) = z2 + 6z + 10 = (z + 3)2 + 1 = (z + 3)2 + 12 ,

which has the conjugate pair of roots −3 ± i. Hence, the general solution of the
equation is

g(t) = c1e
−3t cos(t) + c2e

−3t sin(t) .

The first initial condition implies 0 = g(0) = c!, whereby

g(t) = c2e
−3t sin(t) .

Because
g′(t) = c2e

−3t cos(t)− 3c2e
−3t sin(t) ,

the second initial condition implies 1 = g′(0) = c2. Therefore the Green function
associated with the differential operator is

g(t) = e−3t sin(t) .

(7) [8] Solve the initial-value problem

q′′ + 6q′ + 10q =
4e−3t

cos(t)
, q(0) = q′(0) = 0 .

Solution. This is a nonhomogeneous linear equation with constant coefficients.
Because its forcing does not have characteristic form, we cannot use either Key
Identity Evaluations or Undetermined Coefficients. We will use the Green Function
method. By the last problem the Green function for this problem is g(t) = e−3t sin(t).
Because the equation is in normal form, the initial time is 0, and both the initial values
are 0, the solution to this inital-value problem is given by the Green function formula

q(t) =

∫ t

0

g(t− s)f(s) ds =

∫ t

0

e−3(t−s) sin(t− s) 4e−3s

cos(s)
ds

= 4e−3t
∫ t

0

sin(t− s)
cos(s)

ds .

By using the trig identity

sin(t− s) = sin(t) cos(s)− cos(t) sin(s) ,

we obtain

q(t) = 4e−3t
∫ t

0

sin(t) cos(s)− cos(t) sin(s)

cos(s)
ds

= 4e−3t sin(t)

∫ t

0

ds− 4e−3t cos(t)

∫ t

0

sin(s)

cos(s)
ds

= 4e−3t sin(t) t+ 4e−3t cos(t) log(| cos(t)|) .
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Remark. The interval of definition for this initial-value problem is (−π
2
, π
2
). Over

this interval cos(t) is positive. Therefore we could have written

q(t) = 4e−3t sin(t) t+ 4e−3t cos(t) log(cos(t)) .

Remark. This problem can also be solved by the general Green function method.
However that approach is not as efficient because it does not use the fact the Green
function g(t) was already computed in the solution of the preceeding problem.

Remark. This problem can also be solved by using variation of parameters. However
that approach is not as efficient because it does not directly solve the initial-value
problem. Rather, after finding a particular solution the constants c1 and c2 in qH(t)
must be determined to satisfy the initial conditions.

(8) [8] Find a particular solution uP (t) of the equation u′′ − u = 8et.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
characteristic polynomial is

p(z) = z2 − 1 = (z + 1)(z − 1) ,

which has two simple real roots −1 and 1. The forcing 8et has characteristic form
with degree d = 0 and characteristic µ + iν = 1, which has multiplicity m = 1.
Therefore we can use either Key Identity Evaluations, the Zero Degreee Formula, or
Undetermined Coefficients to find a particular solution uP (t).

Key Indentity Evaluations. Because m + d = m = 1 we need just the first
derivative with respect to z of the Key Identity. The Key Identity and its first
derivative with respect to z are

L
(
ezt
)

= (z2 − 1)ezt , L
(
t ezt

)
= (z2 − 1)t ezt + 2zezt .

By evaluating the first derivative of the Key Identity at z = µ+ iν = 1 we find that

L
(
t et
)

= 2et .

After multiplying this equation by 4 it becomes

L
(
4t et

)
= 8et .

Therefore a particular solution of Lu = 8et is

uP (t) = 4t et .

Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

uP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 8et and p(z) = z2− 1, so that µ+ iν = 1, α− iβ = 8, m = 1,
and p′(z) = 2z, whereby

uP (t) = t et
8

p′(1)
= t et

8

2
= 4t et .
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Undetermined Coefficients. Because m + d = m = 1 and µ + iν = 1, there is a
particular solution in the form

uP (t) = At et .

Because

u′P (t) = A
(
t et + et

)
, u′′P (t) = A

(
t et + 2et

)
,

we see that

LuP (t) = u′′P (t)− uP (t) = A
(
t et + 2et

)
− At et = 2Aet .

By setting L
(
uP (t)

)
= 2Aet = 8et, we see that A = 4. Therefore a particular solution

of Lu = 8et is
uP (t) = 4t et .

(9) [10] The functions 1 + 2t and e2t are solutions of the homogeneous equation

t x′′ − (1 + 2t)x′ + 2x = 0 over t > 0 .

(You do not have to check that this is true!)
(a) [3] Show that these functions are linearly independent.
(b) [7] Give a general solution of the nonhomogeneous equation

t y′′ − (1 + 2t)y′ + 2y =
8t2

1 + 2t
over t > 0 .

Solution (a). The Wronskian of 1 + 2t and e2t is

Wr[1 + 2t, e2t](t) = det

(
1 + 2t e2t

2 2e2t

)
= (1 + 2t)2e2t − 2e2t = 4t e2t .

Because Wr[1 + 2t, e2t](t) 6= 0 for t > 0, the functions 1 + 2t and e2t are linearly
independent.

Solution (b). Because the equation has variable coefficients, we must use either the
general Green function method or the variation of parameters method to solve it.
Because we are asked for a general solution, neither of these methods is favored. To
apply either method we must first bring the equation into its normal form

y′′ − 1 + 2t

t
y′ +

2

t
y =

8t

1 + 2t
over t > 0 .

Because 1 + 2t and e2t are linearly independent, they constitute a fundamental set of
solutions to the associated homogeneous equation.

Variation of Parameters. Because 1 + 2t and e2t constitute a fundamental set of
solutions to the associated homogeneous equation, we seek a general solution of the
nonhomogeneous equation in the form

y(t) = (1 + 2t)u1(t) + e2tu2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

(1 + 2t)u′1(t) + e2tu′2(t) = 0 ,

2u′1(t) + 2e2tu′2(t) =
8t

1 + 2t
.
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The solution of this system is

u′1(t) = − 2

1 + 2t
, u′2(t) = 2e−2t .

Integrate these equations to obtain

u1(t) = c1 − log(1 + 2t) , u2(t) = c2 − e−2t .
Therefore a general solution of the nonhomogeneous equation is

y(t) = (1 + 2t)c1 + e2tc2 − (1 + 2t) log(1 + 2t)− 1 .

Remark. Another way to find u′1(t) and u′2(t) is to use the formulas

u′1(t) = − Y2(t) f(t)

Wr[Y1, Y2](t)
, u′2(t) =

Y1(t) f(t)

Wr[Y1, Y2](t)
,

with Y1(t) = 1 + 2t, Y2(t) = e2t, and f(t) = 8t/(1 + 2t). They yield

u′1(t) = −e2t 8t

1 + 2t

1

4t e2t
= − 2

1 + 2t
,

u′2(t) = (1 + 2t)
8t

1 + 2t

1

4t e2t
= 2e−2t .

This approach reqires the memorization of two formulas. The General Green Function
method requires the memorization of just one formula.

General Green Function. The Green function G(t, s) is given by

G(t, s) =
1

Wr[1 + 2s, e2s](s)
det

(
1 + 2s e2s

1 + 2t e2t

)
=
e2t(1 + 2s)− (1 + 2t)e2s

4s e2s
.

The Green Function Formula then yields the particular solution

yP (t) =

∫ t

0

G(t, s) f(s) ds =

∫ t

0

e2t(1 + 2s)− (1 + 2t)e2s

4s e2s
8s

1 + 2s
ds

= 2e2t
∫ t

0

e−2s ds− 2(1 + 2t)

∫ t

0

1

1 + 2s
ds

= e2t
(
1− e−2t

)
− (1 + 2t) log(1 + 2t) .

Therefore a general solution of the nonhomogeneous equation is

y(t) = c1(1 + 2t) + c2e
2t + e2t − 1− (1 + 2t) log(1 + 2t) .

Remark. Because the integrands are both continuous except at s = −1
2
, and because

we want our solution to be defined for every t > 0, the lower endpoint of integration
in the Green Function Formula can be taken to be any tI > −1

2
. In that case both

of the integrands are continuous over the interval of integration for every t > 0. We
took tI = 0 because it simplified the evaluation of the primitives at tI . If we had
been asked to solve an initial-value problem then we should have taken tI to be the
initial time.

Remark. Notice the general solutions produced by the Variation of Parameters and
General Green Function methods differ slightly.
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(10) [8] Give a real general solution of the equation

D2v − 5Dv + 4v = 10 cos(3t) , where D =
d

dt
.

Solution. This is a nonhomogeneous equation for v(t) with constant coefficients. Its
characteristic polynomial is

p(z) = z2 − 5z + 4 = (z − 1)(z − 4) .

This has the simple real roots 1 and 4, which yields a real general solution of the
associated homogeneous problem given by

vH(t) = c1e
t + c2e

4t .

The forcing 10 cos(3t) has degree d = 0, characteristic µ + iν = i3, and multiplicity
m = 0. A particular solution vP (t) can be found by using either Key Identity Evalu-
ations, the Zero Degree Formula, or Undetermined Coefficients. Below we show that
each of these methods gives the particular solution

vP (t) = −1
5

cos(3t)− 3
5

sin(3t) .

Therefore a real general solution is

v = c1e
t + c2e

4t − 1
5

cos(3t)− 3
5

sin(3t) .

Key Indentity Evaluations. Because m+ d = m = 0, we can simply evaluate the
Key Identity at z = µ+ iν = i3, to find

L
(
ei3t
)

= p(i3)ei3t =
(
(i3)2 − 5(i3) + 4

)
ei3t = −(5 + i15)ei3t .

Because the forcing is 10 cos(3t) = 10 Re
(
ei3t
)
, we divide the above by 1 + i3 and

multiply by −2 to find

L

(
−2

1 + i3
ei3t
)

= 10ei3t .

Therefore a particular solution of Lv = 10 cos(3t) is given by

vP (t) = Re

(
−2

1 + i3
ei3t
)

= −2 Re

(
1− i3
12 + 32

ei3t
)

= −1
5

Re
(
(1− i3)ei3t

)
= −1

5
Re
(
(1− i3)

(
cos(3t) + i sin(3t)

))
= −1

5
cos(3t)− 3

5
sin(3t) .

Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

vP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.
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For this problem f(t) = 10 cos(3t) and p(z) = z2 − 5z + 4, so that µ + iν = i3,
α − iβ = 10, m = 0, and p(i3) = (i3)2 − 5 · (i3) + 4 = −9 + i15 + 4 = −5 − i15.
Therefore the particular solution of Lv = 10 cos(3t) is given by

vP (t) = Re

(
10

−5− i15
ei3t
)

= Re

(
−2

1 + i3
ei3t
)

= −2 Re

(
1− i3
12 + 32

ei3t
)

= −1
5

Re
(
(1− i3)ei3t

)
= −1

5
Re
(
(1− i3)

(
cos(3t) + i sin(3t)

))
= −1

5

(
cos(3t) + 3 sin(3t)

)
= −1

5
cos(3t)− 3

5
sin(3t) .

Undetermined Coefficients. Because m + d = m = 0 and µ + iν = i3, there is a
particular solution in the form

vP (t) = A cos(3t) +B sin(3t) .

Because

v′P (t) = −3A sin(3t) + 3B cos(3t) , v′′P (t) = −9A cos(3t)− 9B sin(3t) ,

we see that

LvP (t) = v′′P (t)− 5v′P (t) + 4vP (t)

=
(
− 9A cos(3t)− 9B sin(3t)

)
− 5
(
− 3A sin(3t) + 3B cos(3t)

)
+ 4
(
A cos(3t) +B sin(3t)

)
= −(5A+ 15B) cos(3t)− (5B − 15A) sin(3t) .

After setting LvP (t) = 10 cos(3t), the linear independence of cos(3t) and sin(3t)
implies that

5A+ 15B = −10 , 5B − 15A = 0 .

The solution of this linear algebraic system is A = −1
5

and B = −3
5
. Therefore a

particular solution of Lv = 10 cos(3t) is given by

vP (t) = −1
5

cos(3t)− 3
5

sin(3t) .

(11) [10] The vertical displacement of a spring-mass system is governed by the equation

ḧ+ 10ḣ+ 169h = a cos(ωt− φ) ,

where a > 0, ω > 0, and 0 ≤ φ < 2π.
(a) [2] Give the natural frequency and period of the system.
(b) [4] Show the system is under damped and give its damped frequency and period.
(c) [4] Find the steady state of the system and give its phasor.

Solution (a). If the units of time are seconds then the natural frequency is

ωo =
√

169 = 13 rad/sec .

The natural period is then

To =
2π

ωo
=

2π

13
sec .

Solution (b). The characteristic polynomial of the equation is

p(z) = z2 + 10z + 169 = (z + 5)2 + 169− 25 = (z + 5)2 + 144 = (z + 5)2 + 122 .
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This has the conjugate pair of roots −5± i12. Therefore the system is underdamped
and if the units of time are seconds then its damped frequency is

ωη = 12 rad/sec .

The damped period is then

Tη =
2π

ωη
=

2π

12
sec .

Solution (c). The forcing expressed in its phasor form is

a cos(ωt− φ) = Re
(
aei(ωt−φ)

)
= Re

(
ae−iφeiωt

)
,

where its phasor is the complex number ae−iφ. The steady state of the system is its
periodic solution. Because

p(iω) = (iω)2 + 10(iω) + 169 = 169− ω2 + i10ω ,

it is given by

hP (t) = Re

(
ae−iφ

p(iω)
eiωt
)

= Re

(
ae−iφ

169− ω2 + i10ω
eiωt
)
.

Its phasor is the complex number

ae−iφ

169− ω2 + i10ω
.

Remark. This solution is a simple harmonic oscillation with frequency ω. It is
called the steady state solution of the nonhomogeneous equation because it is the
only periodic solution of that equation. Every other solution of the nonhomogeneous
equation approaches it as t → ∞. This is because every solution of the associated
homogeneous equation decays to zero as t→∞.

Remark. Below we show that this solution can also be found by Key Identity
Evaluations, the Zero Degree Formula, or Undetermined Coefficients. Because the
forcing can be expressed as

a cos(ωt− φ) = a cos(φ) cos(ωt) + a sin(φ) sin(ωt) ,

we see that it has degree d = 0, characteristic µ+ iν = iω, and multiplicity m = 0.

Key Identity Evaluations. Because m + d = m = 0, we can simply evaluate the
Key Identity at z = µ+ iν = iω, to find

L
(
eiωt
)

= p(iω)eiωt =
(
(iω)2 + 10(iω) + 169

)
eiωt =

(
169− ω2 + i10ω

)
eiωt .

We can multiply the Key Identity by ae−iφ and divide by 169− ω2 + i10ω to obtain

L

(
ae−iφ

169− ω2 + i10ω
eiωt
)

= ae−iφeiωt .

By real parts we see that a particular solution of Lh = Re
(
ae−iφeiωt

)
is

hP (t) = Re

(
ae−iφ

169− ω2 + i10ω
eiωt
)
.
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

hP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = Re
(
ae−iφeiωt

)
and p(z) = z2+10z+169, so that µ+ iν = iω,

α− iβ = ae−iφ, m = 0, and

p(iω) = (iω)2 + 10(iω) + 169 = 169− ω2 + i10ω .

Therefore the particular solution is

hP (t) = Re

(
ae−iφ

p(iω)
eiωt
)

= Re

(
ae−iφ

169− ω2 + i10ω
eiωt
)
.

Undetermined Coefficients. Because m+ d = m = 0 and µ+ iν = iω, there is a
particular solution in the form

hP (t) = A cos(ωt) +B sin(ωt) = Re
(
(A− iB)eiωt

)
.

Because

h′P (t) = −ωA sin(ωt) + ωB cos(ωt) , h′′P (t) = −ω2A cos(ωt)− ω2B sin(ωt) ,

we see that

LhP (t) = h′′P (t) + 10h′P (t) + 169hP (t)

=
(
− ω2A cos(ωt)− ω2B sin(ωt)

)
+ 10

(
− ωA sin(ωt) + ωB cos(ωt)

)
+ 169

(
A cos(ωt) +B sin(ωt)

)
=
(
(169− ω2)A+ 10ωB

)
cos(ωt) +

(
− 10ωA+ (169− ω2)B

)
sin(ωt) .

After setting LhP (t) = α cos(ωt) + β sin(ωt), where α = a cos(φ) and β = a sin(φ),
the linear independence of cos(ωt) and sin(ωt) implies that

(169− ω2)A+ 10ωB = α , −10ωA+ (169− ω2)B = β .

The solution of this linear algebraic system is

A =
(169− ω2)α− 10ωβ

(169− ω2)2 + 100ω2
, B =

10ωα + (169− ω2)β

(169− ω2)2 + 100ω2
.

Therefore the particular solution is given by

hP (t) =
(169− ω2)α− 10ωβ

(169− ω2)2 + 100ω2
cos(ωt) +

10ωα + (169− ω2)β

(169− ω2)2 + 100ω2
sin(ωt) .

Its phasor is A− iB, which is

(169− ω2)α− 10ωβ

(169− ω2)2 + 100ω2
− i 10ωα + (169− ω2)β

(169− ω2)2 + 100ω2
.
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(12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 20 cm. (Gravitational acceleration is g = 980 cm/sec2.) A dashpot imparts
a damping force of 280 dynes (1 dyne = 1 gram cm/sec2) when the speed of the
mass is 2 cm/sec. Assume that the spring force is proportional to displacement, that
the damping force is proportional to velocity, and that there are no other forces. At
t = 0 the mass is displaced 5 cm below its rest position and is released with a upward
velocity of 4 cm/sec.
(a) [6] Formulate an initial-value problem that governs the motion of the mass for

t > 0. (DO NOT solve this initial-value problem, just write it down!)
(b) [2] Is this system undamped, under damped, critically damped, or over damped?

(Give your reasoning!)

Solution (a). Let h(t) be the displacement in centimeters at time t in seconds of the
mass from its rest position, with upward displacements being positive. The governing
initial-value problem then has the form

mḧ+ cḣ+ kh = 0 , h(0) = −5 , ḣ(0) = 4 ,

where m is the mass, c is the damping coefficient, and k is the spring constant. The
problem says that m = 10 grams. The spring constant is obtained by balancing the
weight of the mass mg = 10 · 980 dynes) with the force applied by the spring when
it is stetched 20 cm. This gives k 20 = 10 · 980, or

k =
10 · 980

20
= 490 dynes/cm .

The damping coefficient is obtained by balancing the force of 280 dynes with the
damping force imparted by the dashpot when the speed of the mass is 2 cm/sec.
This gives c 2 = 280, or

c = 280
2

= 140 dynes sec/cm .

Therefore the governing initial-value problem is

10ḧ+ 140 ḣ+ 490h = 0 , h(0) = −5 , ḣ(0) = 4 .

Remark. With the equation in normal form the answer is

ḧ+ 14 ḣ+ 49h = 0 , h(0) = −5 , ḣ(0) = 4 .

Remark. If we had chosen downward displacements to be positive then the governing
initial-value problem would be the same except for the initial conditions, which would
be h(0) = 5 and ḣ(0) = −4.

Solution (b). The governing differential equation has constant coefficients. Its
characteristic polynomial is

p(z) = z2 + 14z + 49 = (z + 7)2 ,

which has the double real root −7. Therefore the system is critically damped.


