Second In-Class Exam Math 246, Professor David Levermore Thursday, 15 March 2018

Your Name: UMD SID:							
Discussion Instructor (circle one): Discussion Time (circle one):	Kilian C 8:00	ooley 9:00	Corry Bedwell 10:00	Thien Ngo 11:00			
No books, notes, calculators, or any answer a problem then use the back of one to each part of every problem is located.	of these pa	ages. Cle	early indicate wh	nere your answer			

University Honor Pledge: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

should be crossed out. Your reasoning must be given for full credit. Good luck!

	Signature:			
Problem 1:/4	Problem 2:	/12		
Problem 3:/4	Problem 4:	/12		
Problem 5:/8	Problem 6:	/8		
Problem 7:/8	Problem 8:	/8		
Problem 9:/10	Problem 10:	/8		
Problem 11:/10	Problem 12:	/8		
	Total Score:	/100	Grade:	

Name: _____

(1) [4] Give the interval of definition for the solution of the initial-value problem

$$k''' - \frac{\cos(2t)}{6+t}k'' + \frac{e^{3t}}{2-t}k = \frac{6+t}{6-t}, \qquad k(-2) = k'(-2) = k''(-2) = 4.$$

(2) [12] The functions e^{3t} and e^{-3t} are a fundamental set of solutions to u" - 9u = 0.
(a) [8] Solve the general initial-value problem

$$u'' - 9u = 0$$
, $u(0) = u_0$, $\dot{u}(0) = u_1$

•

(b) [4] Find the associated natural fundamental set of solutions to u'' - 9u = 0.

Name: _____

(3) [4] Suppose that $Z_1(t)$, $Z_2(t)$, and $Z_3(t)$ are solutions of the differential equation $z''' - 3z'' + (1 + t^2)z' + \sin(3t)z = 0$,

Suppose we know that $Wr[Z_1, Z_2, Z_3](0) = 3$. Find $Wr[Z_1, Z_2, Z_3](t)$.

- (4) [12] Let L be a linear ordinary differential operator with constant coefficients. Suppose that all the roots of its characteristic polynomial (listed with their multiplicities) are -3 + i4, -3 + i4, -3 i4, -3 i4, -2, -2, -2, 0, 0.
 - (a) [2] Give the order of L.
 - (b) [7] Give a real general solution of the homogeneous equation Lv = 0.
 - (c) [3] Give the degree, characteristic, and multiplicity for the forcing of the nonhomogeneous equation $Lw = t^2 e^{-2t}$.

Name:

(5) [8] What answer will be produced by the following Matlab commands?

>> ode = 'D2y - 6*Dy + 34*y = 5*exp(3*t)'; >> dsolve(ode, 't')

ans =

(6) [8] Find a particular solution $w_P(t)$ of the equation $w'' - w = 8t e^t$.

(7) [8] Compute the Green function g(t) associated with the differential operator

$$D^2 + 4D + 13$$
, where $D = \frac{d}{dt}$.

(8) [8] Solve the initial-value problem

$$x'' + 4x' + 13x = \frac{9e^{-2t}}{\sin(3t)}, \qquad x(\frac{\pi}{6}) = x'(\frac{\pi}{6}) = 0.$$

Name: _____

(9) [10] The functions 1 + 3t and e^{3t} are solutions of the homogeneous equation

t p'' - (1+3t)p' + 3p = 0 over t > 0.

(You do not have to check that this is true!)

- (a) [3] Show that these functions are linearly independent.
- (b) [7] Give a general solution of the nonhomogeneous equation

$$t q'' - (1+3t)q' + 3q = \frac{27t^2}{1+3t}$$
 over $t > 0$.

(10) [8] Give a real general solution of the equation

$$D^2v - 5Dv + 4v = 10\cos(3t)$$
, where $D = \frac{d}{dt}$.

Name:

(11) [10] The vertical displacement of a spring-mass system is governed by the equation

 $\ddot{h} + 14\dot{h} + 625h = a\cos(\omega t - \phi),$

where a > 0, $\omega > 0$, and $0 \le \phi < 2\pi$. Assume CGS units.

- (a) [2] Give the natural frequency and period of the system.
- (b) [4] Show the system is under damped and give its damped frequency and period.
- (c) [4] Give the steady state solution in its phasor representation $\operatorname{Re}(\gamma e^{i\omega t})$.

- (12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the spring 9.8 cm. (Gravitational acceleration is $g = 980 \text{ cm/sec}^2$.) A dashpot imparts a damping force of 400 dynes (1 dyne = 1 gram cm/sec²) when the speed of the mass is 2 cm/sec. Assume that the spring force is proportional to displacement, that the damping force is proportional to velocity, and that there are no other forces. At t = 0 the mass is displaced 4 cm above its rest position and is released with a downward velocity of 3 cm/sec.
 - (a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0. (DO NOT solve this initial-value problem, just write it down!)
 - (b) [2] Is this system undamped, under damped, critically damped, or over damped? (Give your reasoning!)