
Final Exam Sample Problems, Math 246, Fall 2018

(1) Consider the differential equation
dy

dt
= (9− y2)y2.

(a) Find all of its stationary points and classify their stability.
(b) Sketch its phase-line portrait in the interval −5 ≤ y ≤ 5.
(c) If y1(0) = −1, how does the solution y1(t) behave as t→∞?
(d) If y2(0) = 4, how does the solution y2(t) behave as t→∞?
(e) Evaluate

lim
t→∞

(
y2(t)− y1(t)

)
.

(2) Solve each of the following initial-value problems and give the interval of definition
of each solution.

(a)
dy

dt
+

2ty

1 + t2
= t2 , y(0) = 1 .

(b)
dy

dx
+
exy + 2x

2y + ex
= 0 , y(0) = 0 .

(3) Determine constants a and b such that the following differential equation is exact.
Then find a general solution in implicit form.(

yex + y3
)

dx+
(
aex + bxy2

)
dy = 0 .

(4) Consider the following Matlab function m-file.

function [t,y] = solveit(ti, yi, tf, n)
t = zeros(n + 1, 1); y = zeros(n + 1, 1);
t(1) = ti; y(1) = yi; h = (tf - ti)/n;
for i = 1:n
t(i + 1) = t(i) + h; y(i + 1) = y(i) + h*((t(i))̂ 4 + (y(i))̂ 2);
end

Suppose that the input values are ti = 1, yi = 1, tf = 5, and n = 40.
(a) What initial-value problem is being approximated numerically?
(b) What numerical method is being used?
(c) What is the step size?
(d) What are the output values of t(2), y(2), t(3), and y(3)?

(5) Consider the following Matlab commands.

[t,y] = ode45(@(t,y) y.*(y−1).*(2−y), [0,3], -0.5:0.5:2.5); plot(t,y)

The following questions need not be answered in Matlab format!
(a) What is the differential equation being solved numerically?
(b) Give the initial condition for each solution being approximated?
(c) Over what time interval are the solutions being approximated?
(d) Sketch each of these solutions over this time interval on a single graph.

Label the initial value of each solution clearly.
(e) What is the limiting behavior of each solution as t→∞?
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(6) Let y(t) be the solution of the initial-value problem

y′ = 4t(y + y2) , y(0) = 1 .

(a) Use two steps of the explicit Euler method to approximate y(1).
(b) Use one step of the Runge-trapeziodal method to approximate y(1).
(c) Use one step of the Runge-midpoint method to approximate y(1).

(7) Give an explicit real-valued general solution of the following equations.
(a) y′′ − 2y′ + 5y = t et + cos(2t)

(b) ü− 3u̇− 10u = t e−2t

(c) v′′ + 9v = cos(3t)

(d) w′′′′ + 13w′′ + 36w = 9 sin(t)

(8) Given that y1(t) = t and y2(t) = t−2 are solutions of the associated homogeneous
equation, find a general solution of

t2y′′ + 2t y′ − 2y =
3

t2
+ 5t , for t > 0 .

(9) Solve the following initial-value problems.
(a) w′′ + 4w′ + 20w = 5e2t, w(0) = 3 , w′(0) = −7.

(b) y′′ − 4y′ + 4y =
e2t

3 + t
, y(0) = 0 , y′(0) = 5.

Evaluate any definite integrals that arise.

(10) Give an explicit real-valued general solution of the equation

ḧ+ 2ḣ+ 5h = 0 .

Sketch a typical solution for t ≥ 0. If this equation governs a spring-mass system,
is the system undamped, under damped, critically damped, or over damped? (Give
your reasoning!)

(11) When a mass of 2 kilograms is hung vertically from a spring, it stretches the spring
0.5 m. (Gravitational acceleration is 9.8 m/sec2.) At t = 0 the mass is set in
motion from 0.3 meters below its rest (equilibrium) position with a upward velocity
of 2 m/sec. It is acted upon by an external force of 2 cos(5t). Neglect damping
and assume that the spring force is proportional to its displacement. Formulate an
initial-value problem that governs the motion of the mass for t > 0. (Do not solve
this initial-value problem; just write it down!)

(12) Find the Laplace transform Y (s) of the solution y(t) to the initial-value problem

y′′ + 4y′ + 8y = f(t) , y(0) = 2 , y′(0) = 4 .

where

f(t) =

{
4 for 0 ≤ t < 2 ,

t2 for 2 ≤ t .

You may refer to the table of Laplace transforms on the last page. (Do not take the
inverse Laplace transform to find y(t); just solve for Y (s)!)
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(13) Find the function y(t) whose Laplace transform Y (s) is given by

(a) Y (s) =
e−3s4

s2 − 6s+ 5
, (b) Y (s) =

e−2ss

s2 + 4s+ 8
.

You may refer to the table of Laplace transforms on the last page.

(14) Two interconnected tanks, each with a capacity of 60 liters, contain brine (salt water).
At t = 0 the first tank contains 22 liters and the second contains 17 liters. Brine with
a salt concentration of 6 grams per liter flows into the first tank at 7 liters per hour.
Well-stirred brine flows from the first tank into the second at 8 liters per hour, from
the second into the first at 5 liters per hour, from the first into a drain at 2 liter per
hour, and from the second into a drain at 4 liters per hour. At t = 0 there are 31
grams of salt in the first tank and 43 grams in the second.
(a) Determine the volume of brine in each tank as a function of time.
(b) Give an initial-value problem that governs the amount of salt in each tank as a

function of time. (Do not solve the IVP.)
(c) Give the interval of definition for the solution of this initial-value problem.

(15) Consider the real vector-valued functions x1(t) =

(
1
t

)
, x2(t) =

(
t3

3 + t4

)
.

(a) Compute the Wronskian Wr[x1,x2](t).
(b) Find A(t) such that x1, x2 is a fundamental set of solutions to the linear system

x′ = A(t)x.
(c) Give a general solution to the system you found in part (b).

(16) Give a real, vector-valued general solution of the linear planar system x′ = Ax for

(a) A =

(
6 4
4 0

)
, (b) A =

(
1 2
−2 1

)
.

(17) Sketch the phase-plane portrait of the linear planar system x′ = Ax for

(a) A =

(
6 4
4 0

)
, (b) A =

(
1 2
−2 1

)
.

(18) What answer will be produced by the following Matlab command?

>> A = [1 4; 3 2]; [vect, val] = eig(sym(A))

You do not have to give the answer in Matlab format.

(19) A real 2×2 matrix B has the eigenpairs(
2 ,

(
3
1

))
and

(
−1 ,

(
−1
2

))
.

(a) Give a general solution to the linear planar system x′ = Bx.
(b) Give an invertible matrix V and a diagonal matrix D that diagonalize B.
(c) Compute etB.
(d) Sketch a phase-plane portrait for this system and identify its type. Classify the

stability of the origin. Carefully mark all sketched orbits with arrows!
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(20) Solve the initial-value problem x′ = Ax, x(0) = xI for the following A and xI.

(a) A =

(
3 10
−5 −7

)
, xI =

(
−3
2

)
.

(b) A =

(
8 −5
5 −2

)
, xI =

(
3
−1

)
.

(21) Consider the system

ẋ = 2xy , ẏ = 9− 9x− y2 .
(a) Find all of its stationary points.
(b) Find all of its semistationary orbits.
(c) Find a nonconstant function H(x, y) such that every orbit of the system satisfies

H(x, y) = c for some constant c.
(d) Classify the type and stability of each stationary point.
(e) Sketch the stationary points plus the level set H(x, y) = c for each value of c that

corresponds to a stationary point that is a saddle. Carefully mark all sketched
orbits with arrows!

(22) Consider the system

u′ = −5v , v′ = u− 4v − u2 .
(a) Find all of its stationary points.
(b) Compute the Jacobian matrix at each stationary point.
(c) Classify the type and stability of each stationary point.
(d) Sketch a phase-plane portrait of the system that shows its behavior near each

stationary point. Carefully mark all sketched orbits with arrows!

(23) Consider the system

ṗ = p(3− 3p+ 2q) , q̇ = q(6− p− q) .
(a) Find all of its stationary points.
(b) Compute the Jacobian matrix at each stationary point.
(c) Classify the type and stability of each stationary point.
(d) Sketch a phase-plane portrait of the system that shows its behavior near each

stationary point. Carefully mark all sketched orbits with arrows!
(e) Add the orbits of all semistationary solutions to the phase-plane portrait sketched

for part (d). Carefully mark these sketched orbits with arrows!
(f) Why do solutions that start in the first quadrant stay in the first quadrant?
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Table of Laplace Transforms

h(t) = L−1[H](t) H(s) = L[h](s)

tneat for n ≥ 0
n!

(s− a)n+1
for s > a

eat cos(bt)
s− a

(s− a)2 + b2
for s > a

eat sin(bt)
b

(s− a)2 + b2
for s > a

eat cosh(bt)
s− a

(s− a)2 − b2
for s > a+ |b|

eat sinh(bt)
b

(s− a)2 − b2
for s > a+ |b|

tnj(t) for n ≥ 0 (−1)nJ (n)(s) where J(s) = L[j](s)

j′(t) s J(s)− j(0) where J(s) = L[j](s)

eatj(t) J(s− a) where J(s) = L[j](s)

u(t− c)j(t− c) for c ≥ 0 e−csJ(s) where J(s) = L[j](s)

δ(t− c)j(t) for c ≥ 0 e−csj(c)

Here a, b, and c are real numbers; n is an integer; j(t) is any function that is nice enough;
u(t) is the unit step (Heaviside) function; δ(t) is the unit impulse (Dirac delta).


