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(1) [6] In the absence of predators the population of mosquitoes in a certain area would
increase at a rate proportional to its current population such that it would triple
every four weeks. There are 200,000 mosquitoes in the area when a flock of birds
arrives that eats 50,000 mosquitoes per week.
(a) [4] Give an initial-value problem that governs M(t), the number of mosquitoes in

the area after the flock of birds arrives. (Do not solve the initial-value problem!)
(b) [2] Is the flock of birds large enough to control the mosquitoes?

Solution (a). The population tripling every four weeks means that the growth rate
r satisfies er4 = 3, whereby r = 1

4
log(3). Therefore the initial-value problem that M

satisfies is
dM

dt
= 1

4
log(3)M − 50, 000 , M(0) = 200, 000 .

Solution (b). Because the differential equation is autonomous (as well as linear),
the monotonicity of M(t) can be determined by a sign analysis of its right-hand side.
We see from part (a) that

dM

dt
= 1

4
log(3)

(
M − 200, 000

log(3)

)
> 0 for M >

200, 000

log(3)
.

Because log(3) > 1 we see that M(0) = 200, 000 > 200, 000/ log(3), whereby M(t) is
an increasing function of t. Therefore the flock of birds is not large enough to control
the mosquitoes.

Remark. The same information can be obtained from a phase-line portrait.

(2) [22] Find an explicit solution for each of the following initial-value problems and give
its interval of definition.

(a)
dy

dt
+

4ty

1 + t2
=

2

(1 + t2)2
, y(0) = 3.

Solution (a). This is a nonhomogeneous linear equation that is alreay normal
form. Its coefficient 4t/(1 + t2) and forcing 2/(1 + t2)2 both are continuous
everywhere. Therefore the interval of definition of the solution is (−∞,∞).

An integrating factor is

exp

(∫ t

0

4s

1 + s2
ds

)
= exp

(
2 log(1 + t2)

)
= (1 + t2)2 ,

whereby the equation has the integrating factor form

d

dt

(
(1 + t2)2y

)
= (1 + t2)2

2

(1 + t2)2
= 2 .

By integrating both sides of this equation we find that

(1 + t2)2y =

∫
2 dt = 2t+ c .

1



2

The initial condition y(0) = 3 implies that (1 + 02)23 = 2 · 0 + c, whereby c = 3.
Therefore the solution is

y =
2t+ 3

(1 + t2)2
.

This foumula confirms that its interval of definition is (−∞,∞).

(b)
dz

dt
=
z2 − 9

6
et , z(0) = 2.

Solution (b). This is a nonautonomous separable equation. Its right-hand side
is defined everywhere. Because z2−9 = (z−3)(z+3), its only stationary points
are z = 3 and z = −3. Because z2−9 is differentiable at these stationary points,
no other solution can touch them. Because its initial value 2 lies between the
stationary points −3 and 3, the solution of this initial-value problem will also
lie between −3 and 3. Therefore its interval of definition is (−∞,∞).

The differential equation has the separated differential form

6

z2 − 9
dz = et dt ,

whereby ∫
6

z2 − 9
dz =

∫
et dt .

By the partial fraction identity

6

z2 − 9
=

6

(z − 3)(z + 3)
=

1

z − 3
+
−1

z + 3
,

and the fact that |z − 3| = 3− z and |z + 3| = z + 3 for −3 < z < 3, we have∫
6

z2 − 9
dz =

∫
1

z − 3
dz −

∫
1

z + 3
dz

= log(|z − 3|)− log(|z + 3|)

= log(3− z)− log(z + 3) = log

(
3− z
z + 3

)
.

Therefore an implicit general solution is

log

(
3− z
z + 3

)
= et + c .

The initial condition z(0) = 2 implies that

log

(
3− 2

2 + 3

)
= e0 + c ,

whereby c = log(1
5
)− 1. Hence, the solution is governed implicitly by

log

(
3− z
z + 3

)
= et + log(1

5
)− 1 .

By exponentiating both sides we obtain

3− z
z + 3

=
1

5
exp
(
et − 1

)
,
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which becomes the linear expression in z given by

3− z =
1

5
exp
(
et − 1

)
(z + 3) .

This can be solved to arrive the explicit solution

z = 3
5− exp(et − 1)

5 + exp(et − 1)
.

This foumula confirms that its interval of definition is (−∞,∞).

(3) [12] Consider the differential equation
du

dt
=
u2(4− u)(6− u)

(1 + u2)(2− u)2
.

(a) [7] Sketch its phase-line portrait over the interval −2 ≤ u ≤ 8. Identify points
where it has no solution. Identify its stationary points and classify each as being
either stable, unstable, or semistable.

(b) [5] For each stationary point identify the set of initial-values u(0) such that the
solution u(t) converges to that stationary point as t→ −∞.

Solution (a). This equation is autonomous. Its right-hand side is undefined at
u = 2 and is differentiable elsewhere. Its stationary points are found by setting

u2(4− u)(6− u)

(1 + u2)(2− u)2
= 0 .

Therefore the stationary points are u = 0, u = 4, and u = 6. (Notice that 1+u2 > 0.)
Because the right-hand side is differentiable at each of these stationary points, no
other solutions will touch them. (Uniqueness!)

A sign analysis of the right-hand side shows that the phase-line portrait is

+ + + − +
→→ +→→→→ • →→→→ ◦ →→→→ • ←←←← • →→→→ +→→ u
−2 0 2 4 6 8

semistable undefined stable unstable

Remark. The terms stable, unstable, and semistable are applied only to solutions.
The point u = 2 is not a solution, so these terms should not be applied to it.

Solution (b). When t decreases the solutions u(t) will move in the direction opposite
to that of the arrows that are shown in the phase-line portrait given in the solution to
part (a). Moreover, uniqueness implies that a nonstationary solution will not touch
any stationary one.
• The phase-line portrait shows that for the semistable stationary point 0 we have
u(t)→ 0 as t→ −∞ if and only if u(0) is in the interval [0, 2).
• The phase-line portrait shows that for the stable stationary point 4 we have
u(t)→ 4 as t→ −∞ if and only if u(0) = 4.
• The phase-line portrait shows that for the unstable stationary point 6 we have
u(t)→ 6 as t→ −∞ if and only if u(0) is in the interval (4,∞).
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(4) [12] Consider the following MATLAB function M-file.

function [t,x] = solveit(tI, xI, tF, n)

t = zeros(n + 1, 1); x = zeros(n + 1, 1);
t(1) = tI; x(1) = xI; h = (tF - tI)/n; hhalf = h/2;
for k = 1:n
thalf = t(k) + hhalf; t(k + 1) = t(k) + h;
fnow = (x(k))̂ 2 + exp(t(k)*x(k)); xhalf = x(k) + hhalf*fnow;
fhalf = (xhalf)̂ 2 + exp(thalf*xhalf); x(k + 1) = x(k) + h*fhalf;
end

Suppose the input values are tI = 2, xI = 0, tF = 10, and n = 40.
(a) [4] What initial-value problem is being approximated numerically?
(b) [2] What is the numerical method being used?
(c) [2] What is the step size?
(d) [4] What will be the output values of t(2) and x(2)?

Solution (a). The initial-value problem being approximated numerically is

dx

dt
= x2 + exp(tx) , x(2) = 0 .

Remark. An initial-value problem consists of both a differential equation and an
initial condition. Both must be given for full credit.

Solution (b). The solution is being approximated by the Runge-midpoint method.
(This is clear from the “h*fhalf” in last line of the “for” loop.)

Solution (c). Because tF = 10, tI = 2, and n = 40, the step size is

h =
tF− tI

n
=

10− 2

40
=

8

40
=

1

5
= 0.2 .

Remark. The correct values for tF, tI, and n had to be plugged in to get full credit.

Solution (d). Because h = 0.2, we have hhalf = 0.1.
Because tI = 2 and xI = 0, we have t(1) = tI = 2, and x(1) = xI = 0.
Setting k = 1 inside the “for” loop then yields

thalf = t(1) + hhalf = 2 + 0.1 = 2.1 ,

t(2) = t(1) + h = 2 + 0.2 = 2.2 ,

fnow = (x(1))2 + exp(t(1) * x(1)) = 02 + exp(2 · 0) = 0 + 1 = 1 ,

xhalf = x(1) + hhalf * fnow = 0 + 0.1 · 1 = 0.1 ,

fhalf = xhalf2 + exp(thalf * xhalf) = (0.1)2 + exp(2.1 · 0.1) = (0.1)2 + exp(0.21) ,

x(2) = x(1) + h * fhalf = 0 + 0.2
(
(0.1)2 + exp(0.21)

)
.

Remark. This expression for x(2) did not have to be simplified to get full credit.
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(5) [6] Give the interval of definition for the solution of the initial-value problem

dv

dt
+

cos(t)

t2 − 25
v =

t

sin(t)
, v(4) = −9 .

(You do not have to solve this equation to answer this question!)

Solution. This problem is linear in v. It is already in normal form. The interval of
definition can be read off as follows.
− First, notice that the coefficient cos(t)/(t2 − 25) is undefined at t = ±5 and is

continuous elsewhere.
− Next, notice that the forcing t/ sin(t) is undefined at t = nπ for every integer n

and is continuous elsewhere.
Therefore the interval of definition is (π, 5) because
• the initial time t = 4 is in (π, 5),
• both the coefficient and forcing are continuous over (π, 5),
• the forcing is undefined at t = π,
• the coefficient is undefined at t = 5.

(6) [6] Sketch the graph that would be produced by the following Matlab commands.

[X, Y] = meshgrid(−3:0.1:3,−3:0.1:3)
contour(X, Y, Y − X.̂ 2, [−2, 0, 2])
axis square

Solution. Your sketch should show both x and y axes marked from −3 to 3 and the
graphs of the three parabolas

y = x2 + 2 , y = x2 , y = x2 − 2 .

(7) [8] Suppose you have used a numerical method to approximate the solution of an
initial-value problem over the time interval [1, 5] with 1000 uniform time steps. About
how many uniform time steps do you need to reduce the global error of your approx-
imation by a factor of 1

256
if the method you had used was each of the following?

(Notice that 256 = 44.)

(a) Runge-Kutta method

(b) Runge-midpoint method

(c) Runge-trapezoidal method

(d) Euler method

Solution (a). The Runge-Kutta method is fourth order, so its error scales like h4.

To reduce the error by a factor of 1
256

, we must reduce h by a factor of 1
256

1
4 = 1

4
. We

must increase the number of time steps by a factor of 4, which means we need 4, 000
uniform time steps.

Solution (b). The Runge-midpoint method is second order, so its error scales like

h2. To reduce the error by a factor of 1
256

, we must reduce h by a factor of 1
256

1
2 = 1

16
.

We must increase the number of time steps by a factor of 16, which means we need
16, 000 uniform time steps.
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Solution (c). The Runge-trapezoidal method is second order, so its error scales like

h2. To reduce the error by a factor of 1
256

, we must reduce h by a factor of 1
256

1
2 = 1

16
.

We must increase the number of time steps by a factor of 16, which means we need
16, 000 uniform time steps.

Solution (d). The explicit Euler method is first order, so its error scales like h. To
reduce the error by a factor of 1

256
, we must reduce h by a factor of 1

256
. We must

increase the number of time steps by a factor of 256, which means we need 256, 000
uniform time steps.

(8) [8] A tank has a square base with 3 meter edges, a height of 2 meters, and an open
top. It is initially empty when water begins to fill it at a rate of 6 liters per minute.
The water also drains from the tank through a hole in its bottom at a rate of 4

√
h

liters per minute where h(t) is the height of the water in the tank in meters.
(a) [6] Give an initial-value problem that governs h(t). (Recall 1 m3 = 1000 lit.)

(Do not solve the initial-value problem!)
(b) [2] Does the tank overflow?

Solution (a). Let V (t) be the volume (lit) of water in the tank at time t minutes.
We have the following (optional) picture.

inflow
6 lit/min

−→

height 2 m

water height h(t) m
water volume V (t) lit

base area 9 m2

−→ outflow

4
√
h(t) lit/min

V (0) = 0 lit.

We want to write down an initial-value problem that governs h(t).

Because the tank has a base with an area of 9 m2, the volume of water in the tank
is 9h(t) m3. Because 1 m3 = 1000 lit, V (t) = 1000 · 9h(t) = 9000h(t) lit. Because

dV

dt
= RATE IN− RATE OUT = 6− 4

√
h ,

the initial-value problem that governs h(t) is

9000
dh

dt
= 6− 4

√
h , h(0) = 0 .

Each term in the differential equation has units of lit/min.

Solution (b). The differential equation is autonomous. Its right-hand side is defined
for h ≥ 0 and is differentiable for h > 0. It has one stationary point at h = 36

16
. Its

phase-line portrait for h > 0 is

+ −
→→→→→→ • ←←←←←← h

36
16

This portrait shows that if h(0) = 0 then h(t) → 36
16

as t → ∞. Because the height

of the tank is 2 and 36
16
> 2, the tank will overflow.
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(9) [20] For each of the following differential forms determine if it is exact or not. If it
is exact then give an implicit general solution. Otherwise find an integrating factor.
(You do not need to find a general solution in the last case.)

(a) (4xy + 3y3) dx+ (x2 + 3xy2) dy = 0 .

Solution (a). This differential form is not exact because

∂y(4xy + 3y3) = 4x+ 9y2 6= ∂x(x2 + 3xy2) = 2x+ 3y2 .

Therefore we seek an integrating factor µ that satisfies

∂y
[
(4xy + 3y3)µ

]
= ∂x

[
(x2 + 3xy2)µ

]
.

Expanding the partial derivatives yields

(4xy + 3y3)∂yµ+ (4x+ 9y2)µ = (x2 + 3xy2)∂xµ+ (2x+ 3y2)µ .

Grouping the µ terms together gives

(4xy + 3y3)∂yµ+ (2x+ 6y2)µ = (x2 + 3xy2)∂xµ .

If we set ∂yµ = 0 then this reduces to x∂xµ = 2µ, which yields the integrating
factor µ = x2.

Remark. Because the differential form was not exact, all we were asked to do
was find an integrating factor. If we had been asked to find an implicit general
solution then we would seek H(x, y) such that

∂xH(x, y) = 4x3y + 3x2y3 , ∂yH(x, y) = x4 + 3x3y2 .

These equations can be integrated to find H(x, y) = x4y + x3y3. Therefore an
implicit general solution is

x4y + x3y3 = c .

(b)
(
ex+y − sin(x)

)
dx+ (ex+y + 5y4) dy = 0 .

Solution (b). This differential form is exact because

∂y
(
ex+y − sin(x)

)
= ex+y = ∂x

(
ex+y + 5y4

)
= ex+y .

Therefore we can find H(x, y) such that

∂xH(x, y) = ex+y − sin(x) , ∂yH(x, y) = ex+y + 5y4 .

Integrating the first equation with respect to x yields

H(x, y) = ex+y + cos(x) + h(y) ,

which implies that

∂yH(x, y) = ex+y + h′(y) .

Plugging this expression for ∂yH(x, y) into the second equation gives

ex+y + h′(y) = ex+y + 5y4 ,

which yields h′(y) = 5y4. Taking h(y) = y5, an implicit general solution is

ex+y + cos(x) + y5 = c .


