Math 246, Jeffrey Adams

Test 3, Friday, November 16, 2018 SOLUTIONS
Problem 1
(a) Convert the linear differential equation

$$
t y^{\prime \prime \prime}+e^{t} y^{\prime \prime}-\frac{1}{t} y^{\prime}+6 y=\sin (t)
$$

into a single first order matrix equation.
(b) Find the inverse Laplace transform $\mathcal{L}^{-1}[X(s)](t)$ of the function

$$
X(s)=\frac{3 s+11}{s^{2}-3 s-4}
$$

Solution:
(a)

$$
\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{6}{t} & \frac{1}{t^{2}} & -\frac{e^{t}}{t}
\end{array}\right)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\sin (t)
\end{array}\right)
$$

(b)

Solution
$s^{2}-3 s-4=(s+1)(s-4)$, so

$$
\frac{3 s+11}{s^{2}-3 s-4}=\frac{A}{s+1}+\frac{B}{s-4}
$$

for some A, B. Combining over a common denominator gives

$$
\frac{3 s+11}{s^{2}-3 s-4}=\frac{A(s-4)+B(s+1)}{s^{2}-3 s-4}
$$

or

$$
\frac{3 s+11}{s^{2}-3 s-4}=\frac{(A+B) s+(-4 A+B)}{s^{2}-3 s-4}
$$

So $A+B=2$ and $4 a+B=11$, which gives

$$
A=\frac{-8}{5}, \quad B=\frac{23}{5}
$$

So the inverse Laplace transform is

$$
\mathcal{L}^{-1}\left(\frac{-\frac{8}{5}}{s+1}\right)+\mathcal{L}^{-1}\left(\frac{\frac{23}{5}}{s-4}\right)
$$

By the table we conclude this equals

$$
-\frac{8}{5} e^{-t}+\frac{23}{5} e^{4 t}
$$

Problem 2 Find the general solution of

$$
t y^{\prime \prime}+y^{\prime}=1
$$

You can use the fact that the solutions to $t y^{\prime \prime}+y^{\prime}=0$ are 1 and $\ln (t)$.
Solution:
The normal form is $y^{\prime \prime}+\frac{1}{t} y^{\prime}=\frac{1}{t}$. Variation of parameters gives $y=$ $u_{1}(t)+u_{2}(t) \ln (t)$, where

$$
\begin{aligned}
u_{1}^{\prime}+u_{2}^{\prime} \ln (t) & =0 \\
u_{1}^{\prime} * 0+u_{2}^{\prime} \frac{1}{t} & =\frac{1}{t}
\end{aligned}
$$

This gives $u_{2}^{\prime}=1$, so $u_{2}=t$. Then $u_{1}^{\prime}=-\ln (t)$, so $u_{1}=-(t \ln (t)-t)$. Then

$$
y=-(t \ln (t)-t) * 1+t(\ln (t))=t
$$

is a particular solution, and the general solution is

$$
c_{1}+c_{2} \ln (t)+t
$$

Problem 3
Find the general real solution of the system

$$
\frac{d \vec{x}}{d t}=\left(\begin{array}{cc}
-3 & 1 \\
-1 & -1
\end{array}\right) \vec{x}(t)
$$

Solution:

The characteristic polynomial is $(-3-z)(-1-z)+1=z^{2}+3 z+z+3+1=$ $z^{2}+4 z+4=(z+2)^{2}$. The -2 eigenspace is given by

$$
\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

So $\vec{v}=(1,1)$. So one solution is $\vec{x}_{1}(t)=e^{-2 t}(1,1)$. Take $\vec{w}=(1,0)$ to give another solution:

$$
\begin{aligned}
e^{-2 t}(\vec{w}+(A+2 I) t \vec{w}) & =e^{-2 t}\left(\binom{1}{0}+t\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{1}{0}\right) \\
& =e^{-2 t}\left(\binom{1}{0}+t\binom{-1}{-1}\right) \\
& =e^{-2 t}\binom{1-t}{-t}
\end{aligned}
$$

So the general solution is

$$
c_{1} e^{-2 t}\binom{1}{0}+c_{2} e^{-2 t}\binom{1-t}{-t}
$$

There are other ways to solve this problem.
Problem 4
Consider the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}-3 y=f(t) \quad y(0)=2, y^{\prime}(0)=1
$$

where

$$
f(t)= \begin{cases}t & 0 \leq t \leq 1 \\ e^{t} & 1<t\end{cases}
$$

(a) Compute the Laplace transform of $f(t)$
(b) Determine the Laplace transform $Y(s)$ of the solution $y(t)$ of the equation.

It is not necessary to find the inverse Laplace transform $y(t)$.
Solution:
(a) The function is

$$
f(t)=t\left(u(t)-u(t-1)+e^{t} u(t-1)=t u(t)+\left(-t+e^{t}\right) u(t-1)\right.
$$

So

$$
\mathcal{L}(f)(s)=\mathcal{L}(t)+\mathcal{L}\left(\left(e^{t}-t\right) u(t-1)\right.
$$

and $\mathcal{L}(t)=\frac{1}{s^{2}}$. Also

$$
\mathcal{L}\left(\left(e^{t}-1\right) u(t-1)\right)=\mathcal{L}(u(t-1) j(t-1))
$$

where $j(t)=e^{t+1}-(t+1)$. Then $\mathcal{L}(j)(s)=\mathcal{L}\left(e e^{t}-t-1\right)=e \frac{1}{s-1}-\frac{1}{s^{2}}+\frac{1}{s}$. Therefore

$$
\mathcal{L}\left(\left(e^{t}-1\right) u(t-1)\right)=e^{-s} \mathcal{L}(j)=e^{-s}\left(\frac{e}{s-1}-\frac{1}{s^{2}}+\frac{1}{s}\right)
$$

(b)

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}+r 4 y^{\prime}-3 y\right) & =s^{2} \mathcal{L}(y)-\left(s y^{\prime}(0)+y(0)\right)+4(s \mathcal{L}(y)-y(0))-3 \mathcal{L}(y) \\
& =\left(s^{2}+4 s-3\right) \mathcal{L}(y)-(s+2)-8 \\
& =\left(s^{2}+4 s-3\right) \mathcal{L}(y)-s-10
\end{aligned}
$$

So the equation is

$$
\left(s^{2}+4 s-3\right) Y(s)-s-10=e^{-s}\left(\frac{e}{s-1}-\frac{1}{s^{2}}+\frac{1}{s}\right)
$$

Problem 5
Consider the following MATLAB commands.

```
syms t s Y;
f=['t^2+exp(t)'];
eq=sym(['D (D (y))(t)+3*D(y) (t)+2*y(t)= 'f]);
leq=laplace(eq,t,s)
algeqn=subs(leq,{'laplace(y(t),t,s)','y(0)','D(y)(0)'},{Y,2,-1});
ytrans=simplify(solve(algeqn,Y));
y=ilaplace(ytrans,s,t)
```

(a) What is the initial value problem that is being solved?
(b) What is the value of the algeqn variable? Hint: it is of the form

$$
2 * Y+\cdots==1 /(s-1)+\ldots
$$

and you should fill in the missing terms.
Solution
(a) The differential equation is

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}+e^{t} \quad y(0)=2, y^{\prime}(0)=-1 \tag{b}
\end{equation*}
$$

Take the Laplace transform of both sides:

$$
\mathcal{L}\left(y^{\prime \prime}\right)+3 \mathcal{L}\left(y^{\prime}\right)+2 \mathcal{L}(y)=\mathcal{L}\left(t^{2}\right)+L\left(e^{t}\right)
$$

this gives

$$
s^{2} \mathcal{L}(y)-\left(s y(0)+y^{\prime}(0)\right)+3(s \mathcal{L}(y)-y(0))+2 \mathcal{L}(y)=\frac{2}{s^{3}}+\frac{1}{s-1}
$$

(the terms on the right are from the table of Laplace transforms). Plugging in $y(0)=2, y^{\prime}(0)=-1$ gives

$$
s^{2} \mathcal{L}(y)-(2 s-1)+3(s \mathcal{L}(y)-2)+2 \mathcal{L}(y)=\frac{2}{s^{3}}+\frac{1}{s-1}
$$

and setting $\mathcal{L}(y)=Y$ this is

$$
\left(s^{2}+3 s+2\right) Y-(2 s+5)=\frac{2}{s^{3}}+\frac{1}{s-1}
$$

Here is the literal output from Matlab:
algeqn =
$2 * Y-2 * s+3 * Y * s+Y * s \wedge 2-5==1 /(s-1)+2 / s^{\wedge} 3$

Table of Laplace Transforms

$\mathcal{L}\left[t^{n}\right](s)$	$\frac{n!}{s^{n+1}}$	for $s>0$
$\mathcal{L}\left[t^{n} e^{a t}\right](s)$	$\frac{n!}{(s-a)^{n+1}}$	for $s>a$
$\mathcal{L}\left[e^{a t} \cos (b t)\right](s)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	for $s>a$
$\mathcal{L}\left[e^{a t} \sin (b t)\right](s)$	$\frac{b}{(s-a)^{2}+b^{2}}$	for $s>a$
$\mathcal{L}\left[t^{n} j(t)\right](s)$	$(-1)^{n} J^{(n)}(s)$	where $J(s)=\mathcal{L}[j(t)](s)$
$\mathcal{L}\left[e^{a t} j(t)\right](s)$	$J(s-a)$	where $J(s)=\mathcal{L}[j(t)](s)$
$\mathcal{L}[u(t-c) j(t-c)](s)$	$e^{-c s} J(s)$	where $J(s)=\mathcal{L}[j(t)](s)$
		u is the unit step function

