Math 340, Jeffrey Adams SOLUTIONS

Final Exam, December 15, 2010
All Questions 20 points

Question 1 (a) The cross product is $(1,1,2) \times(1,2,2)=(2-4,-2+2,2-1)=$ $(-2,0,1)$. The answer is all multiples of this.
(b) The determinant is $c-1+3$, which equals 0 if and only if $c=-2$. So it is invertible if and only if $c \neq-2$.
(c) For what values of a are $\vec{v}=(5, a, 2 a)$ and $\vec{w}=(-1+2 a, 6-a, 3+a)$ linearly independent? The easiest way is to compute $\vec{v} \times \vec{w}$, and see if it is $\overrightarrow{0}$. The cross product is $(a(3+a)-2 a(6-a), 5(3+1)-2 a(-1+2 a), 5(6-$ 1) $-a(-a+2 a)$. The first coordinate gives $3 a^{2}-9 a=0$, i.e. $a=0$ or $a=3$. If $a=0$ the vectors are $(5,0,0)$ and $(-1,6,3)$ which are obviously linearly independent. If $a=3$ they are ($5,3,6$) and ($5,3,6$) which are linearly dependent. So they are linearly independent if and only if $a \neq 3$.
(2) Let $M=\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 1 & -1\end{array}\right)$.
(a) Using row operations you can get to $\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$ which has null space (x, y, z) with $y+2 z=0$ and $x-z=0$, i.e. spanned by $(1,-2,1)$.
(b) The image is spanned by the columns $(2,1,3),(1,1,1)$ and $(0,1,-1)$. These aren't linearly independent, although any two of them are, and serve as a basis (of course there are infinitely many other possibilities).
(3) Let $f(x, y)=x^{2}+y^{2}-x y$.
(a) $\nabla f=(2 x-y, 2 y-x)$.
(b) This is the tangent approximation: $T(x, y)=(3,1)+\nabla f(3,1)(x-3, y-$ $1)=(3,1)+(5,-1) \cdot(x-3, y-1)$, or $T(x, y)=(3 x-6, y)$.
(4) On the interior: $\nabla f(x, y)=\overrightarrow{0}$ only at $\left(\frac{1}{2}, 0\right)$.

On the boundary

$$
(2 x-1,-4 y)+\lambda(2 x, 2 y)=(0,0)
$$

and $x^{2}+y^{2}=1$ gives $y=0, x= \pm 1$ or $\lambda=2, x=\frac{1}{6}$ and $y= \pm \frac{\sqrt{35}}{6}$. Checking these points the maximum is 2 at $(1,0)$, and the minimum is $-\frac{75}{36}$, at $\left(\frac{1}{6}, \frac{\sqrt{35}}{6}\right)$. (5) Make a bowl by rotating the curve $y=2 x^{2}$ around the y-axis, and cutting it off at $y=4$. Write down an integral to compute the surface are of the bowl. It is not necessary to evaluate the integral.

Turn it sideways, and use $x=2 y^{2}$, or $f(x)=y=\frac{1}{\sqrt{2}} \sqrt{x}$, Then $f^{\prime}(x)=$ $\frac{1}{2 \sqrt{2} \sqrt{x}}$, and

$$
\int_{0}^{4} 2 \pi \frac{1}{\sqrt{2}} \sqrt{x} \sqrt{1+\frac{1}{8 x}}
$$

(6) (a) $\vec{x}^{\prime}(t)=(-\sin (t), \cos (t), 3)$
(b) $\vec{T}(t)=(-\sin (t), \cos (t), 3) / \sqrt{\sin ^{2}(t)+\cos ^{2}(t)+9}=(-\sin (t), \cos (t), 3) / \sqrt{10}$.
(c) $\vec{T}^{\prime}(t)=(-\cos (t),-\sin (t), 0)$, so $\kappa(t)=1 / 10$ (the constant function).
(7) Let $\vec{F}(x, y, z)=\left(2 x^{2}, 3 x y, x y z\right)$. Compute $\int_{C} \vec{F} \cdot d \vec{x}$ where C is the curve $\vec{x}(t)=\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 2$.

$$
\begin{aligned}
\int_{0}^{2}\left(2 t^{2}, 3 t^{3}, t^{6}\right) \cdot\left(1,2 t, 3 t^{2}\right) d t & =\int_{0}^{2}\left(2 t^{2}+6 t^{4}+3 t^{8}\right) d t \\
& =\left[\frac{2}{3} t^{3}+\frac{6}{5} t^{5}+\frac{3}{9} t^{9}\right]_{0}^{2} \\
& =\frac{16}{3}+\frac{192}{5}+\frac{412}{3}=\frac{1072}{5}
\end{aligned}
$$

(8) Let's hope that F is a gradient vector field. Try $f(x, y)$ such that $f_{x}=$ $y+\frac{1}{y}$, i.e. $f(x, y)=x y+\frac{x}{y}$. Then $f_{x}=y+\frac{1}{y}$, and also $f_{y}=x-\frac{x}{y^{2}}$. So this works, $\vec{F}=\nabla f$, and therefore the integral is independent of path. Furthermore it is equal to $f(2,2)-f(1,1)=3$.

$$
\begin{align*}
\int_{-1}^{1} \int_{2 x^{2}}^{1+x^{2}}(2 x+e y) d y d x & =\int_{-1}^{1}\left[2 x y+\frac{3}{2} y^{2}\right]_{2 x^{2}}^{1+x^{2}} d x \tag{9}\\
& =\int_{-1}^{1}\left(2 x+2 x^{3}+\frac{3}{2}\left(1+x^{4}+2 x^{2}\right)-4 x^{3}-6 x^{4} d x\right. \\
& =\left[-\frac{9}{2} \frac{1}{5} x^{5}-\frac{2}{4} x^{4}=x^{3}+x^{2}+\frac{3}{2} x\right]_{-1}^{1} \\
& =2\left(-\frac{9}{10}+1+\frac{3}{2}\right)=\frac{16}{5}
\end{align*}
$$

(10) Let $T(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$.
(a) The Jacobian is

$$
\operatorname{det}\left(\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right)=4\left(u^{2}+v^{2}\right)
$$

(b) T takes the $0 \leq v \leq 1$ to $0 \leq x \leq 1$, and $u=1,0 \leq v \leq 1$ to the parabola $y^{2}=4-4 x$, etc.
(c)

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} 4\left(u^{2}+v^{2}\right) d u d v & =\int_{0}^{1}\left[\frac{4}{3} u_{4}^{3} u v^{2}\right]_{0}^{1} d v \\
& =\int_{0}^{1}\left(\frac{+}{4} v^{2}\right) d v \\
& =\left[\frac{4}{3} v+\frac{4}{3} v^{3}\right]_{0}^{1}=\frac{8}{3}
\end{aligned}
$$

