
Math 403, Jeffrey Adams

Test I, February 12, 2010 Open Book SOLUTIONS

1. (a) Compute the powers. For example 21 = 2, 22 = 4, 23 = 8, 24 = 16 =
5, etc. Here goes:

2k : 2, 4, 8, 5, 10, 9, 7, 3, 6, 1 : |2| = 10

3k : 3, 9, 5, 4, 1 : |3| = 5

4k : 4, 5, 9, 3, 1 : |4| = 5

5k : 5, 3, 4, 9, 1 : |5| = 5

6k : 6, 3, 7, 9, 10, 5, 8, 4, 2, 1 : |6| = 10

7k : 7, 5, 2, 3, 10, 4, 6, 9, 8, 1 : |7| = 10

8k : 8, 9, 6, 4, 10, 3, 2, 5, 7, 1 : |8| = 10

9k : 9, 4, 3, 5, 1 : |9| = 5

102 : 102 = 1 : |10| = 2

So the orders are

x 1 2 3 7 4 5 6 7 8 9 10
order 1 10 5 5 5 5 10 10 10 5 2

There are lots of ways to shorten the computation. For example once
you see < 3 >= {1, 3, 9, 5, 4} since 5 is prime all of these elements also
have order 5. Also once you see 2 has order 10, then 2k also has order
10 for (k, 10) = 1, i.e. k = 3, 7, 9. This gives that

(b) G is cyclic if and only if it has a generator, i.e. an element of order
10. It does: 2, for example.

(c) Take an element of order 2. The only one is 10, so H = 〈1, 10〉.

(d) Take an element of order 5, say 3. Then K = {1, 3, 9, 5, 4}.

(e) Take x = 1, and multiply it by the 5 elements of K, to get the
elements of K. Then take x = 10, and multiply by the 5 elements of
K, to get 5 more elements. These are distinct from the preceding ones
(if 1 ∗ a = 10 ∗ b with a, b ∈ H , then 10 = ab−1, but 10 is not in H).
These must be the other 5 elements of G.

More explicitly:

x y g=xy
1 1 1
1 3 3
1 9 9
1 5 5
1 4 4
10 1 10
10 3 30=8
10 9 90=2
10 5 50=6
10 4 40=7



Another proof. It is easy to see {xy|x ∈ H, y ∈ K} is a group. It
contains K, so has order ≥ 5. But it is strictly bigger than K, since
it contains 10. So it has order > 5, but this must divide 10, so it has
order 10.

2. The possible orders (by Lagrange) are 1, 2, 3, 4, 6, 8, 12 and 24.

Looking at a cube, it has rotations of order 1, 2, 3 and 4. It does not

have any rotations of order 8, 12 or 24.

How many rotations of order 2 does it have? There are 6 pairs of
opposite edges, and a 180 degree rotation about these. This gives 3.

There are 3 pairs of opposite faces, each giving a 180 degree rotation,
for 3 more. This gives 6 + 3 = 9 elements of order 2.

There are 4 pairs of opposite vertices, each of which has 3 rotations.
Two of these have order 3, the third is the identity. This gives 2×4 = 8
rotations of order 3.

Each pair of opposite faces has two 90 degree rotations, clockwise and
counter-clockwise. This gives 32 = 6 elements of order 4.

This gives:

order number
1 1
2 9
3 8
4 6

Don’t like this? Use the fact that G ≃ S4. Here are the types of
elements of S4: id, (1, 2), (1, 2, 3), (1, 2)(3, 4), and (1, 2, 3, 4). These
have orders 1, 2, 3, 2 and 4.

Let’s list them:



order elements number

1 : id 1

2 : (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) 9

3 : (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2),

(1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3) 8

4 : (1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2),

(1, 4, 2, 3), (1, 4, 3, 2) 6

Note: These are the proper symmetries, not including reflections. The
symmetry group including reflections has order 48. A few of you were
confused by this - I was generous in my grading; sorry for the confusion.

3. The key point is f(ab) = (ab)−1 = b−1a−1. On the other hand f(a)f(b) =
a−1b−1. Suppose f is a homomorphism. So for a, b ∈ G:

f(ab) = f(a)f(b) ⇔ b−1a−1 = a−1b−1 (1)

Now f is a homomorphism if and only if f(ab) = f(a)f(b) for all a, b.
Therefore this holds if and only if b−1a−1 = a−1b−1 for all a, b ∈ G.
This holds if and only if ab = ba for all a, b ∈ G i.e. if and only if G is
abelian.

(Note: a−1b−1 = b−1a−1 for all a, b if and only if ab = ba for all a, b.
This is clear: every element is the inverse of something, so if all inverses
commute, then so do all elements.)

(Note: If G is not abelian then ab 6= ba for some a, b. It is not the case
the ab 6= ba for all a, b, for example if a = 1, or a = b).

Now assume G is abelian. To show f is an isomorphism, we have to
show it is a homomorphism, and it is one-to-one and onto. We just
showed it is a homomorphism. It is clearly one-to-one and onto, since
for each element the inverse exists (this gives onto) and is unique (this
gives one-to-one).

To be long winded about it: f is one-to-one, since f(a) = f(b) implies
a−1 = b−1 implies a = b. It is onto: given a, f(a−1) = (a−1)−1 = a.



Alternatively, a homomorphism is an isomorphism if it has an inverse:
f ◦ f−1 = id, i.e. f(f−1(a)) = a for all a. Well, take f−1 = f . That is
f(f(a)) = (a−1)−1 = a.

4. (a) We have to show f(gh) = f(g)f(h), i.e. det(gh) = det(g) det(h)
for all g, h. This is a basic property of the determinant which you can
simply use. Or, write

g =

(

a b

c d

)

, h =

(

x y

x w

)

Then

gh =

(

ax + bz ay + bw

cx + dz cy + dw

)

Then

det(gh) = (ax + bz)(cy + dw) − (ay + bw)(cx + dz)

= axcy + axdw + bzcy + bzdw − aycx − aydz − bwcx − bwdz

= axdw + bycz − aydz − bwcx the other terms cancel

while

det(g) det(h) = (ad − bc)(xw − yz) = adxw − adyz − bcxw + bcyz

(b) We have to show gHg−1 = H for all g ∈ G. In fact it is enough to
show gHg−1 ⊂ H , i.e. det(h) = 1 implies det(ghg−1) = 1 for all g. But

det(ghg−1) = det(g) det(h) det(g−1)

= det(g) det(g−1) det(h)

= det(gg−1) det(h)

= det(I) det(h)

= det(h) = 1.


