Math 403, Jeffrey Adams
Test I, February 12, 2010 Open Book SOLUTIONS

1. (a) Compute the powers. For example 2! = 2,22 = 4,23 =8 2! =16 =
5, etc. Here goes:
2F:2.4,8,5,10,9,7,3,6,1:|2| = 10
38:3,9,5,4,1:13| =5
4% :4,5,9,3,1: 4| =5
5%:5,3,4,9,1:15| =5
6%:6,3,7,9,10,5,8,4,2,1: |6| = 10
7% :7,5,2,3,10,4,6,9,8,1:|7| = 10
8 :8,9,6,4,10,3,2,5,7,1: |8 = 10
9%:9,4,3,5,1:19| =5
102:10* =1: |10/ =2
So the orders are

X 12 3 745 6 7 8 9 10
order 1 10 5 5 5 5 10 10 10 5 2

There are lots of ways to shorten the computation. For example once
you see < 3 >= {1,3,9,5,4} since 5 is prime all of these elements also
have order 5. Also once you see 2 has order 10, then 2* also has order
10 for (k,10) =1, i.e. k= 3,7,9. This gives that

(b) G is cyclic if and only if it has a generator, i.e. an element of order
10. It does: 2, for example.

(c) Take an element of order 2. The only one is 10, so H = (1, 10).
(d) Take an element of order 5, say 3. Then K = {1,3,9,5,4}.

(e) Take x = 1, and multiply it by the 5 elements of K, to get the
elements of K. Then take x = 10, and multiply by the 5 elements of
K, to get 5 more elements. These are distinct from the preceding ones
(if 1 % a = 10 * b with a,b € H, then 10 = ab™!, but 10 is not in H).
These must be the other 5 elements of G.

More explicitly:

X Yy g=Xy
1 1 1
1 3 3
1 9 9
1 55
1 4 4
10 1 10
10 3 30=8
10 9 90=2
10 5 50=6
10 4 40=7



Another proof. It is easy to see {zylr € H,y € K} is a group. It
contains K, so has order > 5. But it is strictly bigger than K, since
it contains 10. So it has order > 5, but this must divide 10, so it has
order 10.

. The possible orders (by Lagrange) are 1,2,3,4,6,8,12 and 24.

Looking at a cube, it has rotations of order 1,2,3 and 4. It does not
have any rotations of order 8,12 or 24.

How many rotations of order 2 does it have? There are 6 pairs of
opposite edges, and a 180 degree rotation about these. This gives 3.

There are 3 pairs of opposite faces, each giving a 180 degree rotation,
for 3 more. This gives 6 + 3 = 9 elements of order 2.

There are 4 pairs of opposite vertices, each of which has 3 rotations.
Two of these have order 3, the third is the identity. This gives 2 x4 = 8
rotations of order 3.

Each pair of opposite faces has two 90 degree rotations, clockwise and
counter-clockwise. This gives 32 = 6 elements of order 4.

This gives:
order number
1 1
2 9
3 8
4 6

Don’t like this? Use the fact that G ~ S;. Here are the types of
elements of S;: id, (1,2), (1,2,3), (1,2)(3,4), and (1,2,3,4). These
have orders 1,2, 3,2 and 4.

Let’s list them:



order elements number

1: id 1
20 (1,2),(1,3), (1,4), (2,3), (2.4), (3,4),

(1,2)(3, ><1,3><,4>,<1,4><2,3> 9
30 (1,2,3),(1.3,2),(1,2,4), (1,4,2),

(1,3 )(143)(234)( ,3) 8
4 (1234),(1243) (1324),(1 3,4,2),

(1,4,2,3), (1,4,3,2) 6

Note: These are the proper symmetries, not including reflections. The
symmetry group including reflections has order 48. A few of you were
confused by this - I was generous in my grading; sorry for the confusion.

. The key point is f(ab) = (ab)™" = b"'a™'. On the other hand f(a)f(b) =
a~'b~!. Suppose f is a homomorphism. So for a,b € G-

flab) = f(a)f(b) & b~la™ =a™'b"" (1)

Now f is a homomorphism if and only if f(ab) = f(a)f(b) for all a,b.
Therefore this holds if and only if b~'a™ = a7'b7! for all a,b € G.
This holds if and only if ab = ba for all a,b € G i.e. if and only if G is
abelian.

(Note: a='b=! = b~ta™? for all a,b if and only if ab = ba for all a,b.
This is clear: every element is the inverse of something, so if all inverses
commute, then so do all elements.)

(Note: If G is not abelian then ab # ba for some a,b. It is not the case
the ab # ba for all a, b, for example if a = 1, or a = b).

Now assume G is abelian. To show f is an isomorphism, we have to
show it is a homomorphism, and it is one-to-one and onto. We just
showed it is a homomorphism. It is clearly one-to-one and onto, since
for each element the inverse exists (this gives onto) and is unique (this
gives one-to-one).

To be long winded about it: f is one-to-one, since f(a) = ( ) 1mp1ies
a~! = b~ implies a = b. It is onto: given a, f(a™') = (a=1)7?



Alternatively, a homomorphism is an isomorphism if it has an inverse:
foft=id ie f(f~'(a))=a for all a. Well, take f~! = f. That is
f(fla)) = (@)™ =a

. (a) We have to show f(gh) = f(g)f(h), i.e. det(gh) = det(g) det(h)

for all g, h. This is a basic property of the determinant which you can
simply use. Or, write

Then
o (9 +bz ay+bw
- \ex+dz cy+dw

Then
det(gh) = (az + bz)(cy + dw) — (ay + bw)(cx + dz)
= axcy + axdw + bzcy + bzdw — aycr — aydz — bwexr — bwdz

= axdw + bycz — aydz — bwcr  the other terms cancel
while

det(g) det(h) = (ad — bc)(zw — yz) = adzw — adyz — bexw + beyz

(b) We have to show gHg™! = H for all g € G. In fact it is enough to
show gHg™' C H, i.e. det(h) = 1 implies det(ghg™') = 1 for all g. But

det(ghg™') = det(g) det(h) det(g™")
= det(g) det(g~") det(h)
= det(gg~") det(h)
= det([) det( )
= det(h) =



