Math 403, Jeffrey Adams

Test II, April 30, 2010 Take Home, Due Monday May 3 Honor system: open book, but no online or other extensive research

Throughout R is a ring.

- 1. Suppose R has no zero-divisors, and $a \in R$ $(a \neq 0)$ satisfies $a^2 = a$. Show that a is a unity for R.
- 2. Suppose R is commutative with prime characteristic p.
 - (a) Show that for all $a, b \in R$, $(a + b)^p = a^p + b^p$.
 - (b) Show that the map $f(a) = a^p$ is a ring homomorphism from R to R.
- 3. Suppose R is commutative with unity. Let $S = \{r \in R \mid r \text{ is } not \text{ a unit}\}$. If S is an ideal, show that it is (a) a maximal ideal in R, and (b) the unique maximal ideal.
- 4. Suppose R, S are commutative with unities. Let f be a homomorphism from R onto S. Suppose I is an ideal in S, and let $J = \{r \in R \mid f(r) \in I\}$.
 - (a) Show that J is an ideal in R.
 - (b) If I is prime show that J is prime.
 - (c) If I is maximal show that J is maximal.
- 5. Suppose R is commutative and I is a prime ideal of R. Show that (a) I[x] is an ideal in R[x] and (b) I[x] is a prime ideal.
- 6. For p a prime determine the number of irreducible polynomials over \mathbb{Z}_p of degree 2.