Math 403, Jeffrey Adams

Test II, April 30, 2010 Take Home SOLUTIONS

1. Suppose R has no zero-divisors, and $a \in R$ $(a \neq 0)$ satisfies $a^2 = a$. Show that a is a unity for R.

For $b \in R$ we have $a^2b = ab$, which can be written (ab)a = ba, or (ab - b)a = 0. Since there are no zero-divisors this implies ab - b = 0, or ab = b. This holds for all a: a is a unity.

Note: If you assume R has a unity 1, then $a^2 = a$ implies a(a-1) = 0, which implies a = 1 since there are no zero-divisors. But strictly speaking one shouldn't assume there is a 1 beforehand.

- 2. Suppose R is commutative with prime characteristic p.
 - (a) Show that for all $a, b \in R$, $(a + b)^p = a^p + b^p$. By the binomial theory $(a + b)^p = \sum \binom{p}{k} a^k b^{p-k}$. It is a standard fact that p divides $\binom{p}{k}$ for all $1 \le k \le p-1$. For example $\binom{p}{1} = p$, $\binom{p}{2} = p(p-1)/2$, etc. So reducing (mod p) all terms are 0 except the first and last, giving $a^p + b^p$
 - (b) Show that the map $f(a) = a^p$ is a ring homomorphism from R to R. Obviously $f(ab) = (ab)^p = a^p b^p = f(a)f(b)$. Also $f(a+b) = (a+b)^p = a^p + b^p$ by part (a), and this equals f(a) + f(b).
- 3. Suppose R is commutative with unity. Let $S = \{r \in R \mid r \text{ is } not \text{ a unit}\}$. If S is an ideal, show that it is (a) a maximal ideal in R, and (b) the unique maximal ideal.

Suppose $I \subset J \subset R$ and $I \neq J$. Then there is an element $a \in J - I$. By definition of I a is a unit (i.e. not a non-unit). But then J = R as usual: for any r, $(ra^{-1})a = r \in J$.

- For (b), if I is a proper ideal then I cannot contain a unit (which forces I = R). Therefore I is contained in the non-units, i.e. $I \subset S$. So every proper ideal is contained in S, and S is the unique maximal ideal.
- 4. Suppose R, S are commutative with unities. Let f be a homomorphism from R onto S. Suppose I is an ideal in S, and let $J = \{r \in R \mid f(r) \in I\}$.
 - (a) Show that J is an ideal in R. This is straightforward. If $a,b \in J$, then f(ab) = f(a)f(b)inI, and $f(a) + f(b) \in I$, so $ab \in J, a + b \in J$. Also if $a \in R, b \in J$ then $f(ab) = f(a)f(b) \in I$ since $f(b) \in I$ and I is an ideal. So $ab \in J$.
 - (b) If I is prime show that J is prime.
 - (c) If I is maximal show that J is maximal. Consider the homomorphism $\phi: R \to S/J$, obtained by composing f with the projection to S/J. This is surjective since f is

Recall I is prime if and only if R/I is an integral domain. By the isomorphism this holds if and only if S/J is an integral domain, i.e. if and only if J is prime.

Similarly with *maximal* in place of prime, and *field* in place of integral domain.

For another proof of (c), suppose $J \subset K \subset R$. We want to show K = J or K = R. We ahve $I = f(J) \subset f(K) \subset S = f(R)$, and f(K) is an ideal. Since I is maximal, I = f(K) or S = f(K). If I = f(K) then K is contained in $f^{-1}(I) = J$, so K = J.

On the other hand suppose f(K) = S. This does *not* immediately imply K = S. Since f(K) = S we can find $k \in K$ so that f(k) = 1. If k = 1 then K = R and we're done. But we can't assume f(k) = 1. However f(1) = 1 also, so f(k-1) = f(k) - f(1) = 1 - 1 = 0. Since $0 \in I$, this says $f(k-1) \in I$, so $k-1 \in J$. Write k-1 = j for some $j \in J$. Then 1 = k-j. Since $k \in K$, $j \in J \subset K$, this says $1 \in K$, so indeed K = R.

- 5. Suppose R is commutative and I is a prime ideal of R. Show that (a) I[x] is an ideal in R[x] and (b) I[x] is a prime ideal.
 - (a) If $p(x) = \sum a_i x^i \in R[x]$ and $f(x) = \sum b_j x_j \in I[x]$ then $f(x)p(x) = \sum_{i,j} a_i b_j x^{i+j}$. Since $b_j \in I$, $a_i \in R$ and I is an ideal each $a_i b_j \in I$, so $f(x)p(x) \in I[x]$. Also clearly I[x] is a ring.
 - (b) Suppose $f(x) = \sum a_i x^i \in R[x]$ and $g(x) = \sum b_j x^j \in R[x]$ and $f(x)g(x) \in I[x]$. We want to show all $a_i \in I$ or all $b_j \in I$.

Proof by contradiction: suppose not, and choose r, s minimal so that $a_r \notin I, b_s \notin I$. The coefficient c_{r+s} of x^{r+s} in f(x)g(x) is $c_{r+s} = \sum_{i+j=r+s} a_i b_j$. If i+j=r+s then, unless i=r, j=s, either i < r or j < s. By assumption i < r implies $a_i \in$, and j < s implies $b_j \in I$. Since I is an ideal all terms in this sum are in I, except possibly $a_r b_s$. By assumption $c_{r+s} \in I$. Therefore $a_r b_s = c_{r+s} - \sum a_i b_j$ where the sum is over all i+j=r+s except i=r, j=s. All terms on the right are on I, so $a_r b_s \in I$, a contradiction.

Here is another nice proof, provided by someone in class. There is a natural homomorphism $\psi: R[x]/I[x] \to (R/I)[x]$. Since I is prime R/I is an integral domain, and by Theorem 16.1 (R/I)[x] is an integral domain. Now it is not hard to see ψ is an isomorphism. So R[x]/I[x] is an integral domain, which implies I[x] is prime.

6. For p a prime determine the number of irreducible polynomials over \mathbb{Z}_p of degree 2.

The polynomials (x-a)(x-b) are reducible. There are $\binom{p}{2}$ with $a \neq b$, and p with a = b, for a total of $p + \binom{p}{2} = p(p+1)/2$. These are the ones with coefficient of x^2 equal to 1. Multiply by p-1 to have arbitrary such coefficient. There are thus (p-1)p(p+1)/2 reducible polynomials. There are $(p-1)p^2$ polynomials of degree 2, so there are $(p-1)p^2-(p-1)(p+1)/2=(p-1)\binom{p}{2}$ irreducible ones.