Math 463, Jeffrey Adams
Solutions to selected problems in Homework set 3

1. page $53, \# 9$. Note that $|\sin (x)| \leq 1$, and $\lim _{x \rightarrow 0} \sin (x)$ does not exist. So: $|g(z)| \leq M$ does not imply $\lim _{z \rightarrow z_{0}} g(z)$ exists. You cannot apply Theorem 2, page 47; the assumption that both limits exist doesn't hold.
So: given ϵ, there exists δ such that $\left|z-z_{0}\right|<\delta$ implies $\mid f(z)-$ $f\left(z_{0}\right) \left\lvert\,<\epsilon \frac{1}{M}\right.$. Then $\left|z-z_{0}\right|<\delta$ imples $|f(z) g(z)-0|=|f(z) g(z)|=$ $|f(z)||g(z)| \leq \epsilon \frac{1}{M} M=\epsilon$. This proves the limit is 0 .
2. page $59, \# 7$. It is not enough to take the formula $\frac{d}{d z} z^{n}=n z^{n-1}$ for $n>0$ and let $m=-n$. You are trying to prove that this formal procedure is legitimate. You need to use the quotient rule. Suppose $n>0$:

$$
\frac{d}{d z} \frac{1}{z^{n}}=\frac{0 z^{n}-n z^{n-1}}{z^{2 n}}=-n z^{n-1-2 n}=-n z^{-n+1}
$$

Therefore $\frac{d}{d z} z^{-n}=(-n) z^{(-n)+1}=(-n) z^{-((-n)-1)}$. Letting $m=-n$, so $m<0$ gives $\frac{d}{d z} z^{m}=m z^{m-1}$.
3. $\# 9$. The derivative is easily seen to be $\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z^{2}}$. Take the limit along the ray $z=r e^{i \theta}$ with θ fixed. This becomes $\lim _{r \rightarrow 0} r e^{-2 i \theta} r e^{i \theta}=$ $\lim _{r \rightarrow 0} e^{-3 i \theta}$. This can take on any value of absolute value 1 , depending on θ, so the limit doesn't exist.
4. page $68, \# 3$.
(a) (a) Note that $\frac{1}{z}=\frac{1}{z} \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{|z| 2}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$, so $u(x, y)=\frac{x}{x^{2}+y^{2}}$ and $v(x, y)=-\frac{y}{x^{2}+y^{2}}$.
This is easier in polar coordinates: $\frac{1}{z}=\frac{1}{r} e^{-i \theta}=\frac{1}{r} \cos (\theta)-i \frac{1}{r} \sin (\theta)$. Therefore $u(r, \theta)=\frac{1}{r} \cos (\theta)$ and $v(r, \theta)=-\frac{1}{r} \sin (\theta)$.
(b) (b) This is differential if and only if $x=y$.
(c) (c) Note that $z-\bar{z}=2 i \operatorname{Im}(z)$ so $\operatorname{Im}(z)=-\frac{i}{2}(z-\bar{z})$ and $z \operatorname{Im}(z)=$ $-\frac{i}{2} z(z-\bar{z})=-\frac{i}{2} z^{2}+\frac{i}{2} z \bar{z}=-\frac{i}{2} z^{2}+\frac{i}{2}|z|^{2}$. Since z^{2} is analytic for all z the given function is differential exactly where $|z|^{2}$ is, i.e. 0 .
5. \#6. Use polar coordinates (even though the exercise asks about u_{x}, etc., this is equivalent). That is $f\left(r e^{i \theta}\right)=\frac{r^{2} e^{-i \theta}}{r e^{i \theta}}=r e^{-3 i \theta}=r \cos (3 \theta)-$ $\operatorname{ir} \sin (3 \theta)$. Therefore $u(r, \theta)=r \cos (3 \theta)$ and $v(r, \theta)=-r \sin (3 \theta)$. The Cauchy-Riemann equations give $r \cos (3 \theta)=-3 r \cos (3 \theta)$ and $-3 r \sin (3 \theta)=$ $r \sin (3 \theta)$. These hold at 0 .

