Math 463, Jeffrey Adams

Solutions to selected problems in Homework set 4
Assignment 4, due Friday, October 3: page $89, \# 7,8$ a,c, 11; page 94 , \# $1,3,5$; page $96, \# 2$; page $103, \# 24,12$ a; page $107, \# 10$

I graded everything (5 points each) but page $94, \# 3$, page $96, \# 2$, for a total of 45 points, plus 5 extra credit for doing page $99, \# 2 \mathrm{~b}, 3$.

1. page $89, \# 7$. Write $z=x+i y$. Then $\left|e^{-2 x}\right|=\left|e^{-2 x} e^{-2 i y}\right|=\left|e^{-2 x}\right|\left|e^{-2 i y}\right|$. The second term is 1 , and the first is positive, so this equals $e^{-2 x}$. So $\left|e^{-2 x}\right|<1$ if and only if $e^{-2 x}<1$. Taking \log of both sides gives $-2 x<0$, or $x>0$.
Note that $\left|e^{-2 i y}\right|=1$ and it is not necessary to expand this into sin an cos.
2. \#8. a) Write $-2=2 e^{i \pi}$, so $\log (-2)=\ln (2)+\pi i+2 \pi i k(k \in \mathbb{Z})$.
3. \#11. To say $x \rightarrow-\infty$ implicitly means keeping y fixed. So $e^{x+i y}=$ $e^{x} e^{i y}$ goes to 0 along the ray with angle y.
On the other hand if $y \rightarrow \infty$ with x fixed then $\left|e^{x+i y}\right|=e^{x}$, so these points are all on the circle of radius e^{x}. The point goes around this circle infinitely often as $y \rightarrow \infty$.
4. page $94, \# 1$ a) Write $-e i=e(-i)=e e^{-\pi i / 2}$.
b) Write $1-i=\sqrt{2} e^{-\pi i / 4}$.
5. \#5. $\log \left(i^{2}\right)=\log (-1)=\log \left(e^{i \pi}\right)=i \pi+2 \pi i k(k \in \mathbb{Z})$.

On the other hand $2 \log (i)=2 \log \left(e^{i \pi / 2}\right)=2(i \pi / 2)+2 \pi i k=i \pi+4 \pi i k$.
6. page 96, \#2 This comes down to $\operatorname{Arg}\left(\theta_{1}+\theta_{2}\right)=\operatorname{Arg}\left(\theta_{1}\right)+\operatorname{Arg}\left(\theta_{2}\right)+$ $\{-\pi, 0, \pi\}$. The point is if $-\pi \leq \theta_{1}, \theta_{2} \leq \pi$, then $-2 \pi \leq \theta_{1}+\theta_{2} \leq 2 \pi$ - therefore the "error" is at most $\pm \pi$.
7. page $103, \# 2$.

$$
\cos (z)+i \sin (z)=\frac{e^{i z}+e^{-i z}}{2}+i \frac{e^{i z}-e^{-i z}}{2 i}=\frac{e^{i z}+e^{-i z}}{2}+\frac{e^{i z}-e^{-i z}}{2}=e^{i z}
$$

It is possible to do this by expanding $\cos (z), \sin (z)$ into $\cos , \sin , \cosh , \sinh$ of the real and imaginary parts, but this is much more complicated.
8. \#4. Take the identity $\sin \left(z+z_{2}\right)=\sin (z) \cos \left(z_{2}\right)+\cos (z) \sin \left(z_{2}\right)$ and differentiate both sides: $\frac{d}{d z} \sin \left(z+z_{2}\right)=\frac{d}{d z} \sin (z) \cos \left(z_{2}\right)+\cos (z) \sin \left(z_{2}\right)$. This gives $\cos \left(z+z_{2}\right)=\cos (z) \cos \left(z_{2}\right)-\sin (z) \sin \left(z_{2}\right)$. Then take $z=z_{1}$.
9. \#12 a)

$$
\begin{aligned}
2 \sin \left(z_{1}+z_{2}\right) \sin \left(z_{1}-z_{2}\right) & =2 \frac{e^{i\left(z_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}}{2 i} \frac{e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}}{2 i} \\
& =\frac{2}{-4}\left(e^{i\left(z_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right)\left(e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}\right) \\
& =-\frac{2}{4}\left(e^{2 i z_{1}}-e^{2 i z_{2}}-e^{-2 i z_{1}}+e^{-2 i z_{1}}\right) \\
& =-\frac{2}{2}\left(\frac{1}{2}\left(e^{2 i z_{1}}-e^{2 i z_{2}}\right)-\frac{1}{2}\left(e^{-2 i z_{1}}+e^{-2 i z_{1}}\right)\right) \\
& =-\cos \left(2 z_{2}\right)+\cos \left(2 z_{1}\right)
\end{aligned}
$$

10. page 107, $\# 10$

$$
\frac{d}{d z} \tanh (z)=\frac{\frac{d}{d z} \sinh (z) \cosh (z)-\sinh (z) \frac{d}{d z} \cosh (z)}{\cosh ^{2}(z)}=\frac{\cosh ^{2}(z)-\sinh ^{2}(z)}{\cosh ^{2}(z)}
$$

Use the fact that $\cosh ^{2}(z)-\sinh ^{2}(z)=1$.

