Math 463, Jeffrey Adams

Solutions to selected problems in Homework set 7
Assignmnet 7, due Monday, November 3 page 188, \#1,3,6,7,10; page 198, \#2,7 I graded everything, 5 points each, for a total of 35 .

1. page 188, $\# 6$. Once you have $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{4 n+2}$ you should use this to show $f^{(m)}(0)=0$ for some m. That is $f(z)=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} z^{m}$, so

$$
\sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} z^{m}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{4 n+2}
$$

and we conclude $f^{(m)}(0)=(-1)^{n} /(2 n+1)$! if $m=2 n+2$, and 0 otherwise. That is $f^{(m)}(0)=0$ unleess m is of the form $4 n+2$, i.e. $m=2,6,10, \ldots$.
2. $\# 10$. Since $\tanh (z)$ has a pole at $\pm \frac{\pi}{2} i$ the radius of convergence is $\frac{\pi}{2}$. Although $\tanh (z)=\frac{\sinh (z)}{\cosh (z)}$ you cannot use the Taylor series of sinh and cosh to get one for \tanh. If $\sinh (z)=\sum a_{n} z^{n}$ and $\cosh (z)=\sum b_{n} z^{n}$ then $\tanh (z)=\frac{\sum a_{n} z^{n}}{\sum b_{n} z^{n}}$ but this doesn't tell you anything about how to write $\tanh (z)=c_{n} z^{n}$. It certainly isn't the case that $c_{n}=\frac{z_{n}}{b_{n}}$ (since when is $\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}$?).
You just have to compute derivatives of $f(z)=\tanh (z): f^{\prime}(z)=$ $\operatorname{sech}^{2}(z), f^{\prime \prime}(z)==2 \operatorname{sech}^{2}(z) \tanh (z), f^{\prime \prime \prime}(z)=-4 \operatorname{sech}(z) \tanh ^{2}(z)-$ $2 \operatorname{sech}^{4}(z)$. At 0 this gives $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{\prime \prime \prime}(0)=-2$. Therefore $\tanh (z)=z-\frac{2}{3!} z^{3}+\cdots=z-\frac{1}{3} z^{3}+\ldots$.
3. page 198, \#2 You need to find the Taylor expansion of e^{z} about -1, i.e. as a power series in $z+1$. There is a cute trick here: $e^{z}=\sum \frac{1}{n!} z^{n}$, so $e^{z+1}=\sum \frac{1}{n!}(z+1)^{n}$. For most functions this wouldn't tell you anything about $f(0)$, but $e^{z+1}=e e^{z}$, so $e e^{z}=\sum \frac{1}{n!} z^{n}$, and $e^{z}=\frac{1}{e} \sum \frac{1}{n!} z^{n}$. Therefore $\frac{e^{z}}{(z+1)^{2}}=\frac{1}{e} \sum \frac{1}{n!}(z+1)^{n-2}$.
4. \#6 These are both Laurent series about $z_{0}=0$. The $\frac{1}{z}$ term is fine as it is. You have to expand $\frac{1}{1+z^{2}}$ as a Taylor Laurent series about 0 .
If $|z|<1$:

$$
\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}=\sum_{0}^{\infty}(-1)^{n} z^{2 n}
$$

If $|z|>1$:

$$
\frac{1}{1+z^{2}}=\frac{1}{z^{2}} \frac{1-\left(-\frac{1}{z^{2}}\right)}{=} \frac{1}{z^{2}} \sum\left(-\frac{1}{z^{2}}\right)^{n}=\frac{1}{z^{2}} \sum(-1)^{n} z^{-2 n}
$$

The rest of the problem follows easily from this.

