Math 463, Jeffrey Adams

Solutions to selected problems in Homework set 9
Assignment 9, due Monday, November 24: page 280, \#1,2,7; page 296, \#1,4; 5 points each, for a total of 25

1. page $280, \# 1$. After the substitution you have $\int_{C} \frac{1}{2 z^{2}+5 i z-2} d z$. The roots of the denominator are $-\frac{1}{2} i,-2 i$, and only $-\frac{1}{2} i$ is inside the contour. The residue is $\frac{1}{3 i}$, and the solutions is $2 \pi i \frac{1}{3 i}=\frac{2 \pi}{3}$.
2. \#2 The standard substitution gives $-4 i \int_{C} \frac{z}{z^{4}-6 z^{2}+1} d z$. The denominator has roots $z^{2}=3 \pm 2 \sqrt{2}$, or $z= \pm \sqrt{3 \pm 2 \sqrt{2}}$. Only $\pm \sqrt{3-2 \sqrt{2}}$ are inside the contour. Note that $\sqrt{3-2 \sqrt{2}}=1-\sqrt{2}$.
These are simple poles. Use Theorem 2, page 243 to evaluate the residues. The derivate of $z^{4}-6 z^{2}+1$ is $4 z^{3}-12 z=4 z\left(z^{2}-3\right)$, so at $1-\sqrt{2}$ the residue is $\frac{1-\sqrt{2}}{4(z-\sqrt{2})\left((1-\sqrt{2})^{2}-3\right)}=\frac{1}{8 \sqrt{2}}$. At $-1+\sqrt{2}$ the residue is the same. So the solution is $2 \pi i(-4 i) \frac{2}{8 \sqrt{2}}=2 \sqrt{2}$.
Here is a clever trick due to one of the students: use the substitution $z=e^{2 i \theta}$. Then $d \theta=\frac{d z}{2 i z}$. Also $\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))=\frac{1}{2}\left(1-\frac{z+\frac{1}{z}}{2}\right)=$ $\frac{2-z+\frac{1}{z}}{4}$. The integral becomes $4 i \int_{C} \frac{1}{z^{2}-6 z+1} d z$. Notice this is a quadratic in the denominator, and therefore much easier to compute.
3. \#7 I discussed this in class (use the binomial theorem).
4. page 296, $\# 1$ The poles are at $s= \pm \sqrt{2}, \pm i \sqrt{2}$. The residues at $\pm \sqrt{2}$ are $\frac{e^{ \pm \sqrt{2} t}}{2}$, and at $\pm \sqrt{2} i$ are $\frac{e^{ \pm \sqrt{2} i t}}{2}$. Adding these we get $\cos (\sqrt{2} t)+$ $\cosh (\sqrt{2} t)$.
5. \#4. The poles are at $\pm a i$. Use the technique of Example 1, page 292. Write $\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}=\frac{\left(s^{2}-a^{2}\right) /\left((s+a i)^{2}\right)}{(s-a i)^{2}}=\phi(s) /(s-a i)^{2}$. The sum of the residues of at $\pm a i$ is $2 \operatorname{Re}\left[\left(e^{a i t}\left(b_{1}+b_{2} t\right)\right]\right.$ where $\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}=\frac{b_{1}}{s-a i}+\frac{b_{2} t}{(s-a i)^{2}}+$ \ldots Then $b_{1}=\phi^{\prime}(a i)=0$, and $b_{2}=\phi(a i)=\frac{1}{2}$.
This gives $2 \operatorname{Re}\left(e^{a i t}\left(\frac{1}{2} t\right)\right)=t \cos (a t)$.
