Math 744, Fall 2014
 Jeffrey Adams
 Homework IV SOLUTIONS

(1) Find an explicit two-to-one map $S L(2, \mathbb{C}) \rightarrow S O(3, \mathbb{C})$.

Solution: The adjoint representation. The kernel is $\pm I$.
(2) Find an explicit two-to-one map $S L(4, \mathbb{C}) \rightarrow S O(6, \mathbb{C})$.

Solution: We need a 6 -dimensional representation of $G=S L(4, \mathbb{C})$. A natural guess is $W=\bigwedge^{2}(V)$ where $V=\mathbb{C}^{4}$ is the standard (tautological) module. The group G acts naturally on $W: \pi(g)(v \wedge w)=(g v) \wedge(g w)$. This gives a map from G to $G L(6, \mathbb{C})$. Does it preserve a symmetric bilinear form?

In general, if $V=\mathbb{C}^{2 m}$ there is a natural bilinear form on $\bigwedge^{m}(V)$. Fix an isomorphism $\phi: \bigwedge^{2 m}(V) \rightarrow \mathbb{C}$, and define

$$
(\alpha, \beta)=\phi(\alpha \wedge \beta) \quad\left(\alpha, \beta \in \bigwedge^{m}(V)\right)
$$

It is easy to see (,) is bilinear and symmetric if m is even, or skew-symmetric if m is odd.

Applying this to W gives a symmetric bilinear form, which is easily seen to be preserved by G. The kernel is $\pm I$.
(3) Find an explicit two-to-one map $S p(4, \mathbb{C}) \rightarrow S O(5, \mathbb{C})$.

Solution: We need a 5 -dimensional representation of $G=S p(4, \mathbb{C})$. Start with $W=\bigwedge^{2}(V)$ where $V=\mathbb{C}^{4}$ is the standard module, equipped with a symplectic form. Then $\operatorname{dim}(W)=6$.

Suppose $V=\mathbb{C}^{n}$, with a symplectic form \langle,$\rangle . Then there is a natural map$ $\phi: \bigwedge^{k}(V) \rightarrow \bigwedge^{k}\left(V^{*}\right)=\bigwedge^{k}(V)^{*}$ (where V^{*} is the dual). This is given by

$$
\phi\left(v_{1} \wedge \cdots \wedge v_{k}\right)\left(w_{1} \wedge \cdots \wedge w_{k}\right)=\operatorname{det}\left(\left\{\left\langle v_{i}, w_{j}\right\rangle\right\}_{i, j}\right)
$$

(determinant of this $n \times n$ matrix). This defines a form

$$
(\alpha, \beta)=\phi(\alpha)(\beta)
$$

which is symplectic if k is odd, and symmetric if k is even.
Applying this, we have a map $S p(4, \mathbb{C}) \rightarrow S O(6, \mathbb{C})$. But we want $S O(5, \mathbb{C})$ instead.

Back to $V=\mathbb{C}^{n}$, fix a symplectic basis $\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{2}\right\}$ of $V:\left\langle e_{i}, e_{j}\right\rangle=$ $\left\langle f_{i}, f_{j}\right\rangle=0$ and $\left\langle e_{i}, f_{i}\right\rangle=\delta_{i, j}$. Define

$$
\tau=\sum_{i=1}^{n} e_{i} \wedge f_{i}
$$

Using the fact that

$$
v=\sum_{i=1}^{n}\left[\left\langle v, f_{i}\right\rangle e_{i}-\left\langle v, e_{i}\right\rangle f_{i}\right]
$$

it is easy to see that

$$
\langle v, w\rangle=(v \wedge w, \tau) \quad(v, w \in V)
$$

It follows that $S p(4)$ fixes $\tau \in W$, and therefore its orthogonal complement, which has dimension 5 . The kernel is $\pm I$.
(4) Prove the following result. Suppose V is a vector space and $R \subset V$ is a finite subset which spans V. If $\alpha \neq 0 \in R$ there exists at most one pseudo-reflection s such that $s v=-v$ and $s(R)=R$. (Recall a pseudo-reflection is any linear map satisfying $s v=v$ for all v in a subspace of codimension 1 , and $s w=-w$ for some w).

Hint: Suppose s, s^{\prime} both satisfy the condition, so if $t=s s^{\prime}$ then $t \alpha=\alpha$ and $t v=v+f(v) \alpha$ for some $f \in V^{*}$. Consider powers of t.

This Lemma says that a root system can be defined without use of a bilinear form: the $\operatorname{map} R \ni \alpha \rightarrow \alpha^{\vee} \in V^{*}$ is uniquely determined.

Solution: Suppose s, s^{\prime} both satisfying the condition, and let $t=s s^{\prime}$. Then $t(\alpha)=\alpha$. Also for any $v, s(v)-v \in \mathbb{C}\langle\alpha\rangle$, and similarly s^{\prime}. Therefore

$$
t(v)=v+f(v) \alpha
$$

for some $f: V \rightarrow \mathbb{C}$. Since t is linear it is clear that f is linear. It is easy to see that by induction we have

$$
t^{n}(v)=v+n f(v)
$$

for all $n \geq 0$.
Since t is an automorphism of the finite set R, it has some finite order m. Taking $n=m$ we have

$$
t^{m}(v)=v+m f(v)=v
$$

for all v. Therefore $f(v)=0$ for all $v, t(v)=v$ and $s=s^{\prime}$.
(5) If R is an irreducible root system, and $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a set of simple roots, then R has a unique maximal root β (i.e. $\alpha>0$ implies $\beta+\alpha \notin R$).

Set $\alpha_{0}=-\beta$, and define integers a_{i} by $a_{0}=1$ and

$$
\sum_{i=0}^{n} a_{i} \alpha_{i}=0
$$

Let $\widehat{\Pi}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right\}$. Define the extended Dynkin diagram in the same way as the ordinary Dynkin diagram, applied to $\widehat{\Pi}$. Label each node $0 \leq i \leq n$ of the extended diagram with a_{i}.
(a) Draw the extended Dynkin diagrams for the classical groups, including the labels.
(b) Suppose R is simply laced. Show that a_{i} is one-half the sum of the labels on all adjacent nodes.

Solution: Using $\sum_{i=0}^{n} a_{i} \alpha_{i}=0$, compute, for any j :

$$
\left\langle\sum_{i=0}^{n} a_{k} \alpha_{i},{ }^{\vee} \alpha_{j}\right\rangle=0
$$

The term $k=i$ on the left gives 2 , and all terms adjacent to the $k^{t h}$ node give -1 , so $2=\sum a_{r}$ where the sum runs over the adjacent nodes.
(c) The extended Dynkin diagram of type E_{8} has α_{0} adjacent only to the end of the long arm (with bond 1). Use (b) to compute the labels. Show that $\sum_{i=0}^{n} a_{i}=30$.
Solution: $1+2+3+4+5+6+3+4+2=30$.
(d) For a classical group show that the number of nodes of the extended diagram labelled 1 is the order of the center of the simply connected group.
Solution: See (a).
(6) The root system of type D_{4} has an outer automorphism of order 3 which preserves a set of positive roots (corresponding to an automorphism of the Dynkin diagram). Write down this automorphism explicitly.

Solution: The automorphism cyclically permutes $\left\{e_{1}-e_{2}, e_{3}-e_{4}, e_{3}+e_{4}\right\}$ and fixes $e_{2}-e_{3}$. A little linear algebra says that, in the usual coordinates e_{1}, \ldots, e_{4}, this is given by the matrix

$$
A=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

For example $A(1,-1,0,0)^{t}=(0,0,1,-1)^{t}$ and $A(0,1,-1,0)^{t}=(0,1,-1,0)^{t}$.
Note that $A(3,2,1,0)=(3,2,1,0)$. This is because $(3,2,1,0)=\rho$, one-half the sum of the positive roots, and A permutes the positive roots.
(7) Consider the following game on a simply laced Dynkin diagram. Color each node black or white. If a node is black, you can toggle the colors of all adjacent nodes. Two colorings are said to be equivalent if you can relate them by a series of such operations.
(a) Show that in type A_{n} every coloring (with at least one black node) is equivalent to one with exactly 1 black node.
(b) Show that in type E_{8} there are exactly three equivalence classes of colorings, one with all white nodes, and the others with one black node.

Solution: Left up to you. Search for sigma game on non-degenerate graphs on google.

