- 1. Let $f(x) = e^{(x^2)}$ and $g(x) = (e^x)^2$.
 - (a) Find f'(x) and g'(x).
 - (b) One of the integrals $\int e^{(x^2)} dx$ and $\int (e^x)^2 dx$ can be evaluated by the methods of Chapter 5. Determine which integral that is, and evaluate the integral.
- 2. Iodine 131, which has been used for treating cancer of the thyroid gland, is also used in order to detect leaks in water pipes. It has a half-life of (approximately) 8.14 days. Suppose that at noon today you have a bottle with 5 grams of Iodine 131.
 - (a) Find a formula for the amount f(t) of Iodine 131 in the bottle t hours after noon today (i.e., for each $t \ge 0$). (Hint: Section 4.4 might be helpful.)
 - (b) Show that f has an inverse f^{-1} , and find a formula for f^{-1} .
 - (c) In a complete sentence, indicate what the function f^{-1} tells us physically.
- 3. (a) Let b be any real number. Use the product rule for derivatives (and not the Law of Exponents) to show that $\frac{d}{dx}(e^{-x}e^{b+x}) = 0$. Consequently by Theorem 4.6, $e^{-x}e^{b+x}$ is a constant function.
 - (b) By using (a) and letting x = 0, show that the constant function in (a) is e^b , so that $e^{-x}e^{b+x} = e^b$ for all x.
 - (c) Use (b) with b = 0 to prove that $e^{-x} = 1/e^x$ for all real x.
 - (d) Use (b) and (c) to prove that $e^{b+c} = e^b e^c$ for all b and c. (You have just proved the Law of Exponents!)

4. Let
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
, where μ and σ are constants and $\sigma > 0$.

- (a) By taking the derivative of f, show that the maximum value of f is $f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$. Then tell how you can know without taking the derivative of f that the maximum value of f occurs for $x = \mu$.
- (b) Show that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to-\infty} f(x) = 0$.
- (c) Let $\sigma = 1$ and $\mu = 0$. Use the left sum formula with n = 50 to get an approximate value of $\int_{-3}^{3} f(x) dx$. Guess what the limit of the values $\int_{-n}^{n} f(x) dx$ is when n approaches ∞ .

- 1. (a) $f'(x) = (2x)e^{(x^2)}$ and $g'(x) = 2e^x e^x = 2e^{2x}$. (b) The second can be integrated: $\int (e^x)^2 dx = \int (e^{2x} dx) = \frac{1}{2}e^{2x} + C$
- 2. Iodine 131, which has been used for treating cancer of the thyroid gland, is also used in order to detect leaks in water pipes. It has a half-life of (approximately) 8.14 days. Suppose that at noon today you have a bottle with 5 grams of Iodine 131.
 - (a) $f(t) = 5e^{kt}$ for $t \ge 0$. Now $k = -(\ln 2)/8.14$, so $f(t) = 5e^{-t(\ln 2)/8.14}$.
 - (b) Note that f'(t) < 0 for t > 0, so f^{-1} exists. To find the inverse, solve $f(t) = 5e^{-t(\ln 2)/8.14}$ for t.
 - (c) f^{-1} tells us physically that for a given amount less than 5 grams, low long after noon it has been.
- 3. (a) Let b be any real number. By the product rule, $\frac{d}{dx}(e^{-x}e^{b+x}) = -e^{-x}e^{b+x} + e^{-x}e^{b+x} = 0$ for all x. Thus $e^{-x}e^{b+x} = C$ for some constant C.
 - (b) By (a) with x = 0, we have $e^0 e^b = C$, so $e^b = C$. Thus $e^{-x}e^{b+x} = e^b$ for all x.
 - (c) Let b = 0 in (b). Then $e^{-x}e^x = e^0 = 1$, so $e^{-x} = 1/e^x$ for all real x.
 - (d) Let x = c. Then $e^{-c}e^{b+c} = e^b$, so $e^{b+c} = (e^b)/(e^{-c}) = e^b e^c$.

4. Let
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$
, where μ and σ are constants and $\sigma > 0$.

- (a) By taking the derivative of f, show that the maximum value of f is $f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$. Then tell how you can know without taking the derivative of f that the maximum value of f occurs for $x = \mu$.
- (b) Show that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to-\infty} f(x) = 0$.
- (c) Let $\sigma = 1$ and $\mu = 0$. Use the left sum formula with n = 50 to get an approximate value of $\int_{-3}^{3} f(x) dx$. Guess what the limit of the values $\int_{-n}^{n} f(x) dx$ is when n approaches ∞ .
- 5. Number 4 to come.