Worksheet for Section 9.3

- 1. (a) Suppose that $\lim_{n \to \infty} a_n = L$. Tell in a complete sentence why $\lim_{n \to \infty} a_{n+1} = L$.
 - (b) Suppose that $\lim_{n \to \infty} a_n = 3$. Is it necessarily true that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$? Explain why it is true, or why it is not necessarily true. (Hint: Does (4) in Section 9.3 apply?)
 - (c) Suppose that $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} b_n = \pi$. Prove that $\lim_{n \to \infty} a_n b_n = 0$.
- 2. When a superball is dropped onto a hardwood floor, it bounces up to approximately 80% of its original height. Suppose that the ball is dropped initially from a height of 5 feet above the floor, and let b_n = the maximum height of the *n*th bounce.
 - (a) Evaluate b_1, b_2 , and b_3 . (b) Prove that $\lim_{n \to \infty} b_n = 0$.
- 3. Let the sequence $\{a_n\}_{n=1}^{\infty}$ be defined recursively by

$$a_1 = 1$$
, $a_2 = \sin 1$, $a_3 = \sin (\sin 1)$, and in general, $a_{n+1} = \sin a_n$, for all $n \ge 1$

- (a) By Exercise 4.3.60(b) we know that $0 < a_{n+1} < a_n < 1$ for $n \ge 1$. From these inequalities we can use a theorem in Section 9.3 to conclude that $\{a_n\}_{n=1}^{\infty}$ has a limit. Write out the statement of the theorem.
- (b) Let the limit in part (a) be denoted L. Convince yourself and your group that

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sin a_n = \sin \left(\lim_{n \to \infty} a_n \right) = \sin L$$

(c) Find the numerical value of L.

4. (a) Show that
$$\ln(n+1) - \ln n = \int_{1}^{n+1} \frac{1}{t} dt - \int_{1}^{n} \frac{1}{t} dt = \int_{n}^{n+1} \frac{1}{t} dt \ge \frac{1}{n+1}.$$

- (b) Let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln n$, for $n = 1, 2, \dots$ Use (a) to show that $\{a_n\}_{n=1}^{\infty}$ is a decreasing sequence. (Hint: Show that $a_n a_{n+1} \ge 0$.)
- (c) Using the left sum of $\int_{1}^{n+1} \frac{1}{t} dt$ with partition $\{1, 2, ..., n+1\}$, show that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge \ln(n+1)$.
- (d) Use (c) and the definition of a_n to show that $a_n \ge 0$ for all n.
- (e) Use (b) and (d) to show that $\{a_n\}_{n=1}^{\infty}$ converges to a number r. $(r \approx 0.577216)$, and is known as the Euler-Mascheroni constant).