Proof that > n %= 7%/6

Euler discovered the result in the title. The following gives a fairly elemen-
tary proof. We start with some preliminary results (Lemmas 1 and 2). The
main steps in the proof are Lemmas 3, 4, and 5.
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Note that g(0) is not defined. However,
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where the last limit is evaluated using I’Hopital’s rule. Therefore, we can define
g(0) = 0 and g(x) becomes a continuous function in the interval 0 < z < /2.
Let M be the maximum value of |g(x)| in this interval (it can be shown that
0 < g(x) <1, but we don’t need this).

Lemma 1. Let n be an integer. Then
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Proof. For any function F(z), we have ’f: F(x) dz’ < fab |F(x)| de. This hap-
pens because the positive and negative parts partially cancel each other in the
integral of F'(x) but they do not cancel in the integral of |F(z)|. Applying this
inequality to the integral in the statement of the lemma yields
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Since the last integral equals M /2, we are done. O
Let
fn(z) =14 2cos(2x) + 2 cos(4x) + 2 cos(6x) + - - - + 2 cos(2nz).
Lemma 2. If x/m is not an integer, then
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Proof. This can be proved by trig identities, but it is easier to use cosx =
% (e” + e_”). Therefore,
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Recall that 147 +72 4.+ 7™ = (™1 —1)/(r — 1). This yields (use r = e

and r = e~ %)
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where we multiplied the numerator and denominator of the first fraction by e ~%®
and multiplied the numerator and denominator of the second fraction by e**. A
little algebra combines the fractions to yield
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where we have used the fact that sinx = (e” — e‘”) /2i. (]
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Proof. When j > 0, integration by parts yields
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Therefore, using the sum defining f,(z), we obtain
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Lemma 4. lim,,_.. F,, = 0.

Proof. Use the expression for f,(x) from Lemma 2 in the definition for E,, and
integrate by parts to obtain

/2 . /2
E, = r———=dx = - sin ((2n + 1)x) dx
s1n((2n+1)x)d x i
0 0

sinx sinx

__% cos ((2n+1)x) n /”/2 o) cos ((2n + 1)x) g
sinx 2n+1 0 0 2n+1

1 1 /2 cos ((2n + 1)z)
0 OSNNT ) g
+2n+1+2n+1/0 @) g7

/2




Note that we evaluated z/sinz at x = 0 by using lim,_.oz/sinz = 1.
Therefore
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by Lemma 1. This implies that lim,, . E, = 0. O
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Proof. By definition, the infinite sum is the limit of its partial sums. By Lemma
3, the difference between the nth partial sum and 72/8 is E,. By Lemma 4,
lim E,, = 0. Therefore, the limit of the partial sums is 72/8. O

Theorem.

Proof.
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This is the sum over all positive integers minus the sum over the even integers.
What remains is the sum over the odd integers, so
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Multiplying both sides by 4/3 yields the result. O

Where does this proof come from? Let F(z) be the function 2z /7 for 0 <
x < w/2and 2 — (2/m)x for /2 < x < 7, so the graph of F(z) is a line from
(0,0) to (7/2,1), then is a line back down to (m,0). It is possible to write
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The sum on the right is an example of what is known as a Fourier series. Eval-
uating at « = 0 yields Lemma 5. The proof of Lemma 4 is a special case of the
proof that F(x) equals the Fourier series for all values of z.



