
Proof that
∑

n−2
= π2/6

Euler discovered the result in the title. The following gives a fairly elemen-
tary proof. We start with some preliminary results (Lemmas 1 and 2). The
main steps in the proof are Lemmas 3, 4, and 5.

Let

g(x) =
d

dx

( x

sin x

)

=
d

dx
x csc x = cscx − x csc x cot x.

Note that g(0) is not defined. However,

lim
x→0

g(x) = lim
x→0

cscx − x csc x cotx = lim
x→0

sin x − x cosx

sin2 x
= 0,

where the last limit is evaluated using l’Hôpital’s rule. Therefore, we can define
g(0) = 0 and g(x) becomes a continuous function in the interval 0 ≤ x ≤ π/2.
Let M be the maximum value of |g(x)| in this interval (it can be shown that
0 ≤ g(x) ≤ 1, but we don’t need this).

Lemma 1. Let n be an integer. Then

∣

∣

∣

∣

∣

∫ π/2

0

g(x) cos ((2n + 1)x) dx

∣

∣

∣

∣

∣

≤
Mπ

2
.

Proof. For any function F (x), we have
∣

∣

∣

∫ b

a F (x) dx
∣

∣

∣
≤

∫ b

a |F (x)| dx. This hap-

pens because the positive and negative parts partially cancel each other in the
integral of F (x) but they do not cancel in the integral of |F (x)|. Applying this
inequality to the integral in the statement of the lemma yields
∣

∣

∣

∣

∣

∫ π/2

0

g(x) cos ((2n + 1)x) dx

∣

∣

∣

∣

∣

≤

∫ π/2

0

|g(x) cos ((2n + 1)x)| dx ≤

∫ π/2

0

M dx.

Since the last integral equals Mπ/2, we are done.

Let

fn(x) = 1 + 2 cos(2x) + 2 cos(4x) + 2 cos(6x) + · · · + 2 cos(2nx).

Lemma 2. If x/π is not an integer, then

fn(x) =
sin ((2n + 1)x)

sin x
.

Proof. This can be proved by trig identities, but it is easier to use cosx =
1
2

(

eix + e−ix
)

. Therefore,

fn(x) = 1 +
(

e2ix + e−2ix
)

+
(

e4ix + e−4ix
)

+ · · · +
(

e2nix + e−2nix
)

= −1 +
(

1 + e2ix + e4ix + · · · + e2nix
)

+
(

1 + e−2ix + e−4ix + · · · + e−2nix
)

.
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Recall that 1 + r + r2 + · · ·+ rm = (rm+1 − 1)/(r− 1). This yields (use r = e2ix

and r = e−2ix)

fn(x) = −1 +
e2ix(n+1) − 1

e2ix − 1
+

e−2ix(n+1) − 1

e−2ix − 1

= −1 +
e(2n+1)ix − e−ix

eix − e−ix
+

e−(2n+1)ix − e+ix

e−ix − e+ix
,

where we multiplied the numerator and denominator of the first fraction by e−ix

and multiplied the numerator and denominator of the second fraction by eix. A
little algebra combines the fractions to yield

fn(x) =
e(2n+1)ix − e−(2n+1)ix

eix − e−ix
=

sin ((2n + 1)x)

sin x
,

where we have used the fact that sinx =
(

eix − e−ix
)

/2i.

Let

En =

∫ π/2

0

x fn(x) dx.

Lemma 3.

En =
π2

8
−

∑

1 ≤ j ≤ n
j odd

1

j2
.

Proof. When j > 0, integration by parts yields
∫ π/2

0

x cos(2jx) dx =

{

−1/(2j2), j odd,
0 j even.

Therefore, using the sum defining fn(x), we obtain

En =

∫ π/2

0

x dx +

n
∑

j=1

∫ π/2

0

2x cos(2jx) dx =
π2

8
−

∑

1 ≤ j ≤ n
j odd

1

j2
.

Lemma 4. limn→∞ En = 0.

Proof. Use the expression for fn(x) from Lemma 2 in the definition for En and
integrate by parts to obtain

En =

∫ π/2

0

x
sin ((2n + 1)x)

sin x
dx =

∫ π/2

0

x

sin x
sin ((2n + 1)x) dx

= −
x

sinx

cos ((2n + 1)x)

2n + 1

∣

∣

∣

∣

π/2

0

+

∫ π/2

0

g(x)
cos ((2n + 1)x)

2n + 1
dx

= 0 +
1

2n + 1
+

1

2n + 1

∫ π/2

0

g(x)
cos ((2n + 1)x)

2n + 1
dx.
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Note that we evaluated x/ sinx at x = 0 by using limx→0 x/ sin x = 1.
Therefore

|En| ≤
1

2n + 1
+

1

2n + 1

∣

∣

∣

∣

∣

∫ π/2

0

g(x) cos ((2n + 1)x) dx

∣

∣

∣

∣

∣

≤
1

2n + 1
+

1

2n + 1

Mπ

2
,

by Lemma 1. This implies that limn→∞ En = 0.

Lemma 5.
∑

1 ≤ j < ∞
j odd

1

j2
=

π2

8
.

Proof. By definition, the infinite sum is the limit of its partial sums. By Lemma
3, the difference between the nth partial sum and π2/8 is En. By Lemma 4,
lim En = 0. Therefore, the limit of the partial sums is π2/8.

Theorem.
∞
∑

j=1

1

j2
=

π2

6
.

Proof.

3

4

∞
∑

j=1

1

j2
=

(

1 −
1

4

)

∞
∑

j=1

1

j2
=

∞
∑

j=1

1

j2
−

∞
∑

j=1

1

(2j)2
.

This is the sum over all positive integers minus the sum over the even integers.
What remains is the sum over the odd integers, so

3

4

∞
∑

j=1

1

j2
=

∑

1 ≤ j < ∞
j odd

1

j2
=

π2

8
.

Multiplying both sides by 4/3 yields the result.

Where does this proof come from? Let F (x) be the function 2x/π for 0 ≤
x ≤ π/2 and 2 − (2/π)x for π/2 ≤ x ≤ π, so the graph of F (x) is a line from
(0, 0) to (π/2, 1), then is a line back down to (π, 0). It is possible to write

F (x) =
π2

8
−

∑

1 ≤ j < ∞
j odd

1

j2
cos(2jx).

The sum on the right is an example of what is known as a Fourier series. Eval-
uating at x = 0 yields Lemma 5. The proof of Lemma 4 is a special case of the
proof that F (x) equals the Fourier series for all values of x.
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