Proof that $\sum n^{-2}=\pi^{2} / 6$

Euler discovered the result in the title. The following gives a fairly elementary proof. We start with some preliminary results (Lemmas 1 and 2). The main steps in the proof are Lemmas 3, 4, and 5 .

Let

$$
g(x)=\frac{d}{d x}\left(\frac{x}{\sin x}\right)=\frac{d}{d x} x \csc x=\csc x-x \csc x \cot x
$$

Note that $g(0)$ is not defined. However,

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \csc x-x \csc x \cot x=\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{\sin ^{2} x}=0
$$

where the last limit is evaluated using l'Hôpital's rule. Therefore, we can define $g(0)=0$ and $g(x)$ becomes a continuous function in the interval $0 \leq x \leq \pi / 2$. Let M be the maximum value of $|g(x)|$ in this interval (it can be shown that $0 \leq g(x) \leq 1$, but we don't need this).
Lemma 1. Let n be an integer. Then

$$
\left|\int_{0}^{\pi / 2} g(x) \cos ((2 n+1) x) d x\right| \leq \frac{M \pi}{2}
$$

Proof. For any function $F(x)$, we have $\left|\int_{a}^{b} F(x) d x\right| \leq \int_{a}^{b}|F(x)| d x$. This happens because the positive and negative parts partially cancel each other in the integral of $F(x)$ but they do not cancel in the integral of $|F(x)|$. Applying this inequality to the integral in the statement of the lemma yields

$$
\left|\int_{0}^{\pi / 2} g(x) \cos ((2 n+1) x) d x\right| \leq \int_{0}^{\pi / 2}|g(x) \cos ((2 n+1) x)| d x \leq \int_{0}^{\pi / 2} M d x
$$

Since the last integral equals $M \pi / 2$, we are done.
Let

$$
f_{n}(x)=1+2 \cos (2 x)+2 \cos (4 x)+2 \cos (6 x)+\cdots+2 \cos (2 n x)
$$

Lemma 2. If x / π is not an integer, then

$$
f_{n}(x)=\frac{\sin ((2 n+1) x)}{\sin x}
$$

Proof. This can be proved by trig identities, but it is easier to use $\cos x=$ $\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$. Therefore,

$$
\begin{aligned}
f_{n}(x) & =1+\left(e^{2 i x}+e^{-2 i x}\right)+\left(e^{4 i x}+e^{-4 i x}\right)+\cdots+\left(e^{2 n i x}+e^{-2 n i x}\right) \\
& =-1+\left(1+e^{2 i x}+e^{4 i x}+\cdots+e^{2 n i x}\right)+\left(1+e^{-2 i x}+e^{-4 i x}+\cdots+e^{-2 n i x}\right)
\end{aligned}
$$

Recall that $1+r+r^{2}+\cdots+r^{m}=\left(r^{m+1}-1\right) /(r-1)$. This yields (use $r=e^{2 i x}$ and $r=e^{-2 i x}$)

$$
\begin{aligned}
f_{n}(x) & =-1+\frac{e^{2 i x(n+1)}-1}{e^{2 i x}-1}+\frac{e^{-2 i x(n+1)}-1}{e^{-2 i x}-1} \\
& =-1+\frac{e^{(2 n+1) i x}-e^{-i x}}{e^{i x}-e^{-i x}}+\frac{e^{-(2 n+1) i x}-e^{+i x}}{e^{-i x}-e^{+i x}}
\end{aligned}
$$

where we multiplied the numerator and denominator of the first fraction by $e^{-i x}$ and multiplied the numerator and denominator of the second fraction by $e^{i x}$. A little algebra combines the fractions to yield

$$
f_{n}(x)=\frac{e^{(2 n+1) i x}-e^{-(2 n+1) i x}}{e^{i x}-e^{-i x}}=\frac{\sin ((2 n+1) x)}{\sin x}
$$

where we have used the fact that $\sin x=\left(e^{i x}-e^{-i x}\right) / 2 i$.
Let

$$
E_{n}=\int_{0}^{\pi / 2} x f_{n}(x) d x
$$

Lemma 3.

$$
E_{n}=\frac{\pi^{2}}{8}-\sum_{\substack{1 \leq j \leq n \\ j \text { odd }}} \frac{1}{j^{2}}
$$

Proof. When $j>0$, integration by parts yields

$$
\int_{0}^{\pi / 2} x \cos (2 j x) d x= \begin{cases}-1 /\left(2 j^{2}\right), & j \text { odd } \\ 0 & j \text { even }\end{cases}
$$

Therefore, using the sum defining $f_{n}(x)$, we obtain

$$
E_{n}=\int_{0}^{\pi / 2} x d x+\sum_{j=1}^{n} \int_{0}^{\pi / 2} 2 x \cos (2 j x) d x=\frac{\pi^{2}}{8}-\sum_{\substack{1 \leq j \leq n \\ j \text { odd }}} \frac{1}{j^{2}}
$$

Lemma 4. $\lim _{n \rightarrow \infty} E_{n}=0$.
Proof. Use the expression for $f_{n}(x)$ from Lemma 2 in the definition for E_{n} and integrate by parts to obtain

$$
\begin{aligned}
E_{n} & =\int_{0}^{\pi / 2} x \frac{\sin ((2 n+1) x)}{\sin x} d x=\int_{0}^{\pi / 2} \frac{x}{\sin x} \sin ((2 n+1) x) d x \\
& =-\left.\frac{x}{\sin x} \frac{\cos ((2 n+1) x)}{2 n+1}\right|_{0} ^{\pi / 2}+\int_{0}^{\pi / 2} g(x) \frac{\cos ((2 n+1) x)}{2 n+1} d x \\
& =0+\frac{1}{2 n+1}+\frac{1}{2 n+1} \int_{0}^{\pi / 2} g(x) \frac{\cos ((2 n+1) x)}{2 n+1} d x
\end{aligned}
$$

Note that we evaluated $x / \sin x$ at $x=0$ by using $\lim _{x \rightarrow 0} x / \sin x=1$.
Therefore
$\left|E_{n}\right| \leq \frac{1}{2 n+1}+\frac{1}{2 n+1}\left|\int_{0}^{\pi / 2} g(x) \cos ((2 n+1) x) d x\right| \leq \frac{1}{2 n+1}+\frac{1}{2 n+1} \frac{M \pi}{2}$,
by Lemma 1 . This implies that $\lim _{n \rightarrow \infty} E_{n}=0$.

Lemma 5.

$$
\sum_{\substack{1 \leq j<\infty \\ j \text { odd }}} \frac{1}{j^{2}}=\frac{\pi^{2}}{8}
$$

Proof. By definition, the infinite sum is the limit of its partial sums. By Lemma 3 , the difference between the nth partial sum and $\pi^{2} / 8$ is E_{n}. By Lemma 4, $\lim E_{n}=0$. Therefore, the limit of the partial sums is $\pi^{2} / 8$.

Theorem.

$$
\sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\pi^{2}}{6}
$$

Proof.

$$
\frac{3}{4} \sum_{j=1}^{\infty} \frac{1}{j^{2}}=\left(1-\frac{1}{4}\right) \sum_{j=1}^{\infty} \frac{1}{j^{2}}=\sum_{j=1}^{\infty} \frac{1}{j^{2}}-\sum_{j=1}^{\infty} \frac{1}{(2 j)^{2}}
$$

This is the sum over all positive integers minus the sum over the even integers. What remains is the sum over the odd integers, so

$$
\frac{3}{4} \sum_{j=1}^{\infty} \frac{1}{j^{2}}=\sum_{\substack{1 \leq j<\infty \\ j \text { odd }}} \frac{1}{j^{2}}=\frac{\pi^{2}}{8}
$$

Multiplying both sides by $4 / 3$ yields the result.

Where does this proof come from? Let $F(x)$ be the function $2 x / \pi$ for $0 \leq$ $x \leq \pi / 2$ and $2-(2 / \pi) x$ for $\pi / 2 \leq x \leq \pi$, so the graph of $F(x)$ is a line from $(0,0)$ to $(\pi / 2,1)$, then is a line back down to $(\pi, 0)$. It is possible to write

$$
F(x)=\frac{\pi^{2}}{8}-\sum_{\substack{1 \leq j<\infty \\ j \text { odd }}} \frac{1}{j^{2}} \cos (2 j x)
$$

The sum on the right is an example of what is known as a Fourier series. Evaluating at $x=0$ yields Lemma 5. The proof of Lemma 4 is a special case of the proof that $F(x)$ equals the Fourier series for all values of x.

