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Let f be a smooth function near x = 0. For x close to 0, we can write f(x) in terms of
f(0) by using the Fundamental Theorem of Calculus:

+ /Ox f'(t)dt

Now integrate by parts, setting u = f/(t), du = f"(t)dt, v =t — x, dv = dt. (Remember,
the variable of integration is ¢, and we're thinking of x as a constant.) We get
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Now repeat the process. Again, integrate by parts, this time with u = f”(t), du = f"(t) dt
v=(t—x)?/2,dv=(t —z)dt. We get
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Continuing this process over and over, we see eventually that
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where the remainder R, (z) is given by the formula
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In principle this is an exact formula, but in practice it’s usually impossible to compute.
However, let’s assume for simplicity that x > 0 (the case z < 0 is similar) and assume that

a< fOHY) <b,  0<t<u.

In other words, a is a lower bound for f™*1(¢) on the interval [0, ], and b is an upper bound
for f™+1)(¢) on the same interval. Then we get
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Plugging this into (x%), we see that
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which is Lagrange’s estimate for the remainder.



