Note: This exam was originally written when we were using Mathematica in the course. All the Mathematica code has been translated into MATLAB.
>> syms t >> r = [(2*t+1)/(t-1), t^2/(t-1), t+2]; >> v=diff(r); a=diff(v); g=diff(a); h=cross(v,a); >> simplify(h*transpose(g)) ans = 0 >> subs(v, t, 1/2) ans = -12 -3 1 >> subs(h, t, 1/2) ans = 16 -48 48 >> subs(cross(h,v), t, 1/2) ans = 96 -592 -624
>> syms x y >> f=x^3+y^3-x*y^2+2*x^2*y-x^2-y^2; pretty(f) 3 3 2 2 2 2 x + y - x y + 2 x y - x - y >> fx=diff(f,x); fy=diff(f,y); fxx=diff(fx,x); fyy=diff(fy,y); >> fxy=diff(fx,y); disc=fxx*fyy-fxy^2; >> [xcr,ycr]=solve(fx,fy); >> discf=inline(vectorize(disc)); fxxf=inline(vectorize(fxx)); >> double([xcr,ycr,discf(xcr,ycr),fxxf(xcr,ycr)]) ans = 0 0 4.0000 -2.0000 -0.2222 0.4444 -4.8889 -1.5556 0.3022 0.7912 6.2413 2.9780 0.4564 0.1743 -4.8620 1.4358 >> ff=inline(vectorize(f)); >> [xx,yy]=meshgrid(-.5:.01:.5, -.2:.01:.8); zz=ff(xx,yy); >> contour(xx,yy,zz,-2.5:.05:2.5)
>> syms x y z >> addpath nit >> numint3(z,z,sqrt(x^2+y^2),2,y,-sqrt(4-x^2),sqrt(4-x^2),x,-2,2) ans = 12.5657 >> newnumint2(sin(12*x-x^3),x,0,sqrt(y/3),y,0,12) ans = 1.9577 >> newnumint2(x^2,y,0,3*sqrt(1-x^2/4),x,0,2) ans = 4.7128
>> syms x y z >> curl=inline(['[diff(F3,y)-diff(F2,z),', ... 'diff(F1,z)-diff(F3,x), diff(F2,x)-diff(F1,y)]'], 'F1','F2','F3','x','y','z') curl = Inline function: curl(F1,F2,F3,x,y,z) = [diff(F3,y)-diff(F2,z),diff(F1,z)-diff(F3,x), diff(F2,x)-diff(F1,y)] >> grad = inline('[diff(f,x),diff(f,y),diff(f,z)]', 'f', 'x','y','z') grad = Inline function: grad(f,x,y,z) = [diff(f,x),diff(f,y),diff(f,z)] >> curl(x,y,z,x,y,z) ans = [ 0, 0, 0] >> term1=curl('f(x,y,z)*F1(x,y,z)','f(x,y,z)*F2(x,y,z)','f(x,y,z)*F3(x,y,z)',... x,y,z) term1 = [ diff(f(x,y,z),y)*F3(x,y,z)+f(x,y,z)*diff(F3(x,y,z),y)-diff(f(x,y,z),z)*F2(x,y,z) -f(x,y,z)*diff(F2(x,y,z),z), diff(f(x,y,z),z)*F1(x,y,z)+f(x,y,z)*diff(F1(x,y,z),z)-diff(f(x,y,z),x)*F3(x,y,z) -f(x,y,z)*diff(F3(x,y,z),x), diff(f(x,y,z),x)*F2(x,y,z)+f(x,y,z)*diff(F2(x,y,z),x)-diff(f(x,y,z),y)*F1(x,y,z) -f(x,y,z)*diff(F1(x,y,z),y)] >> term2='f(x,y,z)'*curl('F1(x,y,z)','F2(x,y,z)','F3(x,y,z)',x,y,z) term2 = [ f(x,y,z)*(diff(F3(x,y,z),y)-diff(F2(x,y,z),z)), f(x,y,z)*(diff(F1(x,y,z),z)-diff(F3(x,y,z),x)), f(x,y,z)*(diff(F2(x,y,z),x)-diff(F1(x,y,z),y))] >> term3=cross(sym(grad('f(x,y,z)',x,y,z)), ... sym('[F1(x,y,z),F2(x,y,z),F3(x,y,z)]')) term3 = [ diff(f(x,y,z),y)*F3(x,y,z)-diff(f(x,y,z),z)*F2(x,y,z), diff(f(x,y,z),z)*F1(x,y,z)-diff(f(x,y,z),x)*F3(x,y,z), diff(f(x,y,z),x)*F2(x,y,z)-diff(f(x,y,z),y)*F1(x,y,z)] >> simplify(term1-term2-term3) ans = [ 0, 0, 0]