The Baby Step, Giant Step Method

The following prime is not so easy to deal with.

```
p := 633073699
  633073699
 alpha:=numlib::primroot(p)
  3
We first find N for the "giant steps".
 N:=ceil(sqrt(p-1))
```

25161

%=b

Say we want to find L(15679625). We need to generate two lists.

```
b:=15679625:
firstlist :=
matrix(array(1...N, [powermod(alpha, j, p) $ j=0...N-1])):
```

Now we compute the size of the "giant steps".

```
c:=powermod(alpha, -N, p):
secondlist :=
matrix(array(1...N, [mod(b*powermod(c, j, p),p) $ j=0...N-1])):
```

Now we look for a coincidence between the two lists. The obvious method takes N² comparisons, which is slow. So let's do something that takes only a single loop.

The following is the concatenation of the two lists:

```
u:=coerce(firstlist,DOM LIST).coerce(secondlist,DOM LIST):
Now we search for duplications.
v:=listlib::removeDuplicates(u, KeepOrder):
Now we see how lists u and v differ.
for j from 1 to 2*N do
if v[j] <> u[j] then print(j); break; end if; end for
 48697
```

This was the only slow step; it took 117 seconds of CPU time. OK, that means that at the entry number 48697 of list u, there was a duplication of an earlier entry. So this happened at entry number 48697-N of the second list.

```
j:=48697-N
23536
t:=secondlist[23536]:
for k from 1 to N do
if firstlist[k] = t then print(k); break; end if; end for
12815
```

We can assemble this to get the discrete log, x.

```
x := 12814 + 23535 * N
  592176949
Check:
 powermod(alpha, x, p)
 15679625
```

15679625 = 15679625

Yep, it works!