
The Baby Step, Giant Step Method
The following prime is not so easy to deal with.
p:=633073699
633073699

alpha:=numlib::primroot(p)
3

We first find N for the "giant steps".
N:=ceil(sqrt(p-1))
25161

Say we want to find L(15679625).  We need to generate two lists.
b:=15679625:
firstlist := 
matrix(array(1..N, [powermod(alpha, j, p) $ j=0..N-1])):

Now we compute the size of the "giant steps".
c:=powermod(alpha, -N, p):
secondlist := 
matrix(array(1..N, [_mod(b*powermod(c, j, p),p) $ j=0..N-1])):

Now we look for a coincidence between the two lists.  The obvious method takes N2 comparisons, 
which is slow.  So let's do something that takes only a single loop.
The following is the concatenation of the two lists:
u:=coerce(firstlist,DOM_LIST).coerce(secondlist,DOM_LIST):

Now we search for duplications.
v:=listlib::removeDuplicates(u, KeepOrder):

Now we see how lists u and v differ.
for j from 1 to 2*N do
if v[j] <> u[j] then print(j); break; end_if; end_for
48697

This was the only slow step; it took 117 seconds of CPU time.  OK, that means that at the entry 
number 48697 of list u, there was a duplication of an earlier entry.  So this happened at entry 
number 48697-N of the second list.
j:=48697-N
23536

t:=secondlist[23536]:
for k from 1 to N do 
if firstlist[k] = t then print(k); break; end_if; end_for
12815

We can assemble this to get the discrete log, x.
x:=12814+23535*N
592176949

Check:
powermod(alpha, x, p)
15679625

%=b

15679625 = 15679625



15679625 = 15679625

Yep, it works!


