MATH 601: Abstract Algebra II
6th Homework
Partial Solutions

Jonathan Rosenberg

assignment due Wednesday, March 28, 2001

1 Hungerford Problems

V, Section 7, Exercise 6.b. Show that if K is a field of characteristic p and there exists a cyclic extension of
degree p of K, then there exists a cyclic extension of degree p” of K, for all n > 1.

Solution. We prove this by induction on n, the case of n = 1 being trivial. Assume the result is true for n—1,
so there is a field E cyclic over K of degree p™~!. Choose a generator o of Gal(E/K). Since F is separable
over K, TE : E — K is a non-trivial K-linear map, and since dimyx K = 1, TE£ is therefore surjective. So
there is an element v € F with TE (v) = 1. In more concrete terms,

v+o(w)+--+ Upnflfl(v) =1

Clearly v ¢ K, since otherwise we'd have TE (v) = [K : EJv = p"~!v = 0 (since we're in characteristic p), so
in particular v? # v. Since ¢ commutes with the endomorphism x +— P,

n— n— P
TE@WP) = v + o(vP) + - - + oP 1*1(vp):(u+a(v)+...+ap lfl(v)) — 1P =1

So TE(vP —v) =1—1 =0 and by the additive analogue of Hilbert’s Theorem 90, there is an element u € F
with o(u) —u = vP —v. We claim 2P — x — u € E[z] is irreducible. For if not, we know from Hungerford
Corollary V.7.9 that w?” — w — u = 0 for some w € E. Then v? —v = o(u) —u = o(w? —w) — (w? —w) and
o

(v—o(w) +w)" =v—0o(w) +w,
ie., v—o(w)+ w lies in the fixed field of  +— 2P, which is F,, C K. So for some j € Fp, o(w) = v +w + j.
By iteration, we get o%(w) = o(v +w) + j = o(v) + v +w + 2j, and so

" W)= (v+o@) ++ 0P TN W) +w+p T = TEW) +w=w+1.
Since o had order p"~!, this is a contradiction. So #P — x — u € E[z] is irreducible. Let w be a root;
then E(w) is cyclic over E of order p, and of degree [E(w) : E|[E : K] = p"~t= p" over K. We claim

E(w) is cyclic over K of order p™. Indeed, if we define & to be o on F and to send w — w + v, then the
calculation above shows that o is an automorphism of F(w) extending o on F and with the property that

5" (w) = w+ 1, so that 57" generates Gal(E(w)/E). So & has order p" and generates Gal(E(w)/K).
This proves that E(w) is Galois over K with cyclic Galois group. OJ



2 Additional Exercises

2. Let K be a finite field with ¢ elements, and let L be a finite extension field with [L : K] = r. (Thus L has
gr elements.) Recall that the multiplicative groups L* and K* are cyclic, and that G = Gal(L/K) is also
cyclic. Compute the norm map N% : L* — K* explicitly, and show that it is surjective. Show that your
calculation agrees with the prediction of Hilbert’s Theorem 90.

Solution. Recall that G is cyclic of order r, with generator the Frobenius automorphism o : x — z9. For an
element z € L™, the norm is given by

r—1 r—1
= H ol(x) = H 21— pXised — pla"=1)/(g-1)
i=0 i=0

In particular N& : L* — K> is a homomorphism. If xq is a generator of L*, then x has order ¢" — 1
and (NIL((xo))J = 1 exactly when j(¢" — 1)/(q — 1) is divisible by ¢" — 1, i.e., when (¢ — 1) | j. That shows
NE(zg) has order exactly ¢ — 1 and is thus a generator of K>, so NE : L* — K> is surjective. Then by the
isomorphism theorems, K> 22 L*/ker N&, so ker N£ has order |L*|/|K*| = (¢" —1)/(¢—1). Now Hilbert’s
Theorem 90 claims that the kernel of the normal map should consist of elements of the form o(y)/y. Since
o(y)/y =y?/y =y ! and (¢ — 1) | |L*|, ker NE should have order |L*|/(¢ — 1) = (¢" — 1)/(q — 1), which
is just what we showed. [J

3. Let K be the splitting field over Q(w), w a primitive cube root of unity, of the polynomial x® — 3z + 1.

Show that K is a cyclic extension of Q(w) of degree 3, and use the Lagrange resolvant method to show it’s
obtained by adjoining a cube root of something. Again write down the norm map K* — Q(w)* explicitly
and verify the conclusion of Hilbert’s Theorem 90 for this case.
Solution. Let a be a root of 23 — 3z + 1. We claim Q(w)(a) = Q(w, a) is a splitting field of 23 — 3z + 1
over Q(w). First observe since 23 — 3z + 1 has no integral roots, 3 — 3x + 1 is irreducible over Q by
Gauss’s Lemma (any factorization over Q would give a linear factor over Z, and thus an integral root), and
hence « has degree 3 over Q. Since [Q(w) : Q] = 2, « cannot lie in Q(w) and w cannot lie in Q(«), hence
[Qw,a) : Q] = [Qw, ) : Q)][Q() : Q] = [Qw,a) : Qw)][Q(w) : Q] =32 and [Q(w,a) : Q(w)] = 3.
Next observe that the discriminant of 23 — 3z + 1 is —27 — 4 - (=3)3 = (—=27) - (1 — 4) = 81, which is a
perfect square, and hence Q(w, ) is a splitting field of 2® — 3z + 1 over Q(w). Since [Q(w, ) : Q(w)] = 3,
the Galois group G is cyclic of order 3. Let o be a generator of (G, and consider the Lagrange resolvant
¢ = a+ola)w+ o?(a)w? Then o(¢) = o(a) + o?(a)w + aw? = w?(, so ¢ ¢ Q(w) (since it is not fixed
by o) while ¢? € Q(w) (since o(¢?) = (¢(¢))? = (w*()® = ¢3). The method developed in class shows (with
appropriate sign choices) that ¢ is a cube root of 27w, so ¢ is 3 times a primitive 9th root of 1.

Now write K as Q(w)[¢] = Q(w) ® Q(w)¢ ® Q(w)¢?. The generator o of the Galois group may be chosen
to send ¢ — (w, so

N(z+yC+20%) = (2 +yC + 2C) (@ + ylw + 2Cw?) (2 + yw? + 2Cw)
=23 + 2Twy® + 3%0w?2% — (81/2)zyzw.

Thus the kernel of the norm map consists of those z + y¢ + 2¢%, z, y, 2 € Q(w), for which a3 + 27wy? +
3%w?23 — (81/2)zyzw = 1. Hilbert’s Theorem 90 says this is the same as elements of the form

(z + ylw + 2C%w?) [ (x + y¢ + 2¢7).



