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1 Hungerford Problems

V, Section 7, Exercise 6.b. Show that if K is a field of characteristic p and there exists a cyclic extension of
degree p of K, then there exists a cyclic extension of degree pn of K, for all n ≥ 1.
Solution. We prove this by induction on n, the case of n = 1 being trivial. Assume the result is true for n−1,
so there is a field E cyclic over K of degree pn−1. Choose a generator σ of Gal(E/K). Since E is separable
over K, TEK : E → K is a non-trivial K-linear map, and since dimK K = 1, TEK is therefore surjective. So
there is an element v ∈ E with TEK (v) = 1. In more concrete terms,

v + σ(v) + · · ·+ σp
n−1−1(v) = 1.

Clearly v /∈ K, since otherwise we’d have TEK (v) = [K : E]v = pn−1v = 0 (since we’re in characteristic p), so
in particular vp 6= v. Since σ commutes with the endomorphism x 7→ xp,

TEK (vp) = vp + σ(vp) + · · ·+ σp
n−1−1(vp) =

(
v + σ(v) + · · ·+ σp

n−1−1(v)
)p

= 1p = 1.

So TEK (vp − v) = 1− 1 = 0 and by the additive analogue of Hilbert’s Theorem 90, there is an element u ∈ E
with σ(u) − u = vp − v. We claim xp − x − u ∈ E[x] is irreducible. For if not, we know from Hungerford
Corollary V.7.9 that wp −w− u = 0 for some w ∈ E. Then vp − v = σ(u)− u = σ(wp −w)− (wp −w) and
so (

v − σ(w) + w
)p = v − σ(w) + w,

i.e., v − σ(w) + w lies in the fixed field of x 7→ xp, which is Fp ⊆ K. So for some j ∈ Fp, σ(w) = v + w + j.
By iteration, we get σ2(w) = σ(v + w) + j = σ(v) + v + w + 2j, and so

σp
n−1

(w) =
(
v + σ(v) + · · ·+ σp

n−1−1(v)) + w + pn−1j = TEK (v) + w = w + 1.

Since σ had order pn−1, this is a contradiction. So xp − x − u ∈ E[x] is irreducible. Let w be a root;
then E(w) is cyclic over E of order p, and of degree [E(w) : E][E : K] = p·n−1 = pn over K. We claim
E(w) is cyclic over K of order pn. Indeed, if we define σ̃ to be σ on E and to send w 7→ w + v, then the
calculation above shows that σ̃ is an automorphism of E(w) extending σ on E and with the property that
σ̃p

n−1
(w) = w + 1, so that σ̃p

n−1
generates Gal(E(w)/E). So σ̃ has order pn and generates Gal(E(w)/K).

This proves that E(w) is Galois over K with cyclic Galois group. �
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2 Additional Exercises

2. Let K be a finite field with q elements, and let L be a finite extension field with [L : K] = r. (Thus L has
qr elements.) Recall that the multiplicative groups L× and K× are cyclic, and that G = Gal(L/K) is also
cyclic. Compute the norm map NL

K : L× → K× explicitly, and show that it is surjective. Show that your
calculation agrees with the prediction of Hilbert’s Theorem 90.
Solution. Recall that G is cyclic of order r, with generator the Frobenius automorphism σ : x 7→ xq. For an
element x ∈ L×, the norm is given by

NL
K(x) =

r−1∏
i=0

σi(x) =
r−1∏
i=0

xq
i

= x
∑r−1
i=0 q

i

= x(qr−1)/(q−1).

In particular NL
K : L× → K× is a homomorphism. If x0 is a generator of L×, then x0 has order qr − 1

and
(
NL
K(x0)

)j = 1 exactly when j(qr − 1)/(q − 1) is divisible by qr − 1, i.e., when (q − 1) | j. That shows
NL
K(x0) has order exactly q− 1 and is thus a generator of K×, so NL

K : L× → K× is surjective. Then by the
isomorphism theorems, K× ∼= L×/ kerNL

K , so kerNL
K has order |L×|/|K×| = (qr−1)/(q−1). Now Hilbert’s

Theorem 90 claims that the kernel of the normal map should consist of elements of the form σ(y)/y. Since
σ(y)/y = yq/y = yq−1 and (q − 1) | |L×|, kerNL

K should have order |L×|/(q − 1) = (qr − 1)/(q − 1), which
is just what we showed. �

3. Let K be the splitting field over Q(ω), ω a primitive cube root of unity, of the polynomial x3− 3x+ 1.
Show that K is a cyclic extension of Q(ω) of degree 3, and use the Lagrange resolvant method to show it’s
obtained by adjoining a cube root of something. Again write down the norm map K× → Q(ω)× explicitly
and verify the conclusion of Hilbert’s Theorem 90 for this case.
Solution. Let α be a root of x3 − 3x + 1. We claim Q(ω)(α) = Q(ω, α) is a splitting field of x3 − 3x + 1
over Q(ω). First observe since x3 − 3x + 1 has no integral roots, x3 − 3x + 1 is irreducible over Q by
Gauss’s Lemma (any factorization over Q would give a linear factor over Z, and thus an integral root), and
hence α has degree 3 over Q. Since [Q(ω) : Q] = 2, α cannot lie in Q(ω) and ω cannot lie in Q(α), hence
[Q(ω, α) : Q] = [Q(ω, α) : Q(α)][Q(α) : Q] = [Q(ω, α) : Q(ω)][Q(ω) : Q] = 3 · 2 and [Q(ω, α) : Q(ω)] = 3.
Next observe that the discriminant of x3 − 3x + 1 is −27 − 4 · (−3)3 = (−27) · (1 − 4) = 81, which is a
perfect square, and hence Q(ω, α) is a splitting field of x3 − 3x + 1 over Q(ω). Since [Q(ω, α) : Q(ω)] = 3,
the Galois group G is cyclic of order 3. Let σ be a generator of G, and consider the Lagrange resolvant
ζ = α + σ(α)ω + σ2(α)ω2. Then σ(ζ) = σ(α) + σ2(α)ω + αω2 = ω2ζ, so ζ /∈ Q(ω) (since it is not fixed
by σ) while ζ3 ∈ Q(ω) (since σ(ζ3) = (σ(ζ))3 = (ω2ζ)3 = ζ3). The method developed in class shows (with
appropriate sign choices) that ζ is a cube root of 27ω, so ζ is 3 times a primitive 9th root of 1.

Now write K as Q(ω)[ζ] = Q(ω)⊕Q(ω)ζ ⊕Q(ω)ζ2. The generator σ of the Galois group may be chosen
to send ζ 7→ ζω, so

N(x+ yζ + zζ2) = (x+ yζ + zζ2)(x+ yζω + zζ2ω2)(x+ yζω2 + zζ2ω)

= x3 + 27ωy3 + 36ω2z3 − (81/2)xyzω.

Thus the kernel of the norm map consists of those x + yζ + zζ2, x, y, z ∈ Q(ω), for which x3 + 27ωy3 +
36ω2z3 − (81/2)xyzω = 1. Hilbert’s Theorem 90 says this is the same as elements of the form

(x+ yζω + zζ2ω2)/(x+ yζ + zζ2).
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