MATH 603, SPRING 2011 HOMEWORK ASSIGNMENT #9 ON DEDEKIND DOMAINS AND COMPLETIONS: SOLUTIONS

JONATHAN ROSENBERG

(1) Let $R = \mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

(a) To show R is a Dedekind domain, we can apply the theorem proved in class, that it suffices to show R is the integral closure of the PID $S = \mathbb{R}[x]$ in a finite extension field of $K = \mathbb{R}(x)$ (the field of fractions of $\mathbb{R}[x]$). Let $L = \mathbb{R}(x)[y]/(y^2 + x^2 - 1)$. This is a finite algebraic extension of K of degree 2, since $1 - x^2$ is not a perfect square in K. Any element of L can be represented by an expression $f(x, y) = k_1(x) + k_2(x)y$ with $k_1(x), k_2(x) \in K$. If f(x, y) (here we mean the image in L) is integral over S, then so is its Galois conjugate $k_1(x) - k_2(x)y$, so adding and subtracting, we see $k_1(x)$ and $k_2(x)y$ are integral over S. But S is integrally closed in K, so $k_1(x) \in S$, and since y is integral over S, being a root of the monic polynomial $y^2 - (1 - x^2), k_2(x)y^2 = k_2(x)(1 - x^2)$ is also integral over S. That means $k_2(x)(1 - x^2)$ lies in K and is integral over S, and so is a polynomial in x. So $k_2(x) = g(x)/(1 - x^2)$ with $g(x) \in S$. Since $k_2(x)y$ is integral over S, so is

$$(k_2(x)y)^2 = \frac{g(x)^2(1-x^2)}{(1-x^2)^2} = \frac{g(x)^2}{1-x^2},$$

which can only happen if g(x) is divisible by $1 - x^2$. So then $k_1(x)$ and $k_2(x)$ are in S and $f(x, y) \in \mathbb{R}$.

- (b) Let P be a non-zero prime ideal of R; then its contraction $P \cap S$ to $S = \mathbb{R}[x]$ is a prime idea of S. If $P \cap S = (0)$, then $(0) \subset R$ and P would be nested prime ideals both lying over $(0) \subset S$, which is impossible by A-M Corollary 5.9 Thus $P \cap S$ is a non-zero prime ideal and R/P is a finite extension field of $S/(P \cap S)$. But every maximal ideal of $\mathbb{R}[x]$ is of codimension 1 or 2, and the quotient by this maximal ideal is either \mathbb{R} or \mathbb{C} (the only finite extensions of \mathbb{R}), so R/P is a finite extension field of \mathbb{R} and is isomorphic to \mathbb{R} or \mathbb{C} . In the other direction, by the Lying Over Theorem, R must have at least one prime ideal lying over every maximal ideal of $\mathbb{R}[x]$. Now we distinguish various cases.
 - (i) The maximal ideals of S = ℝ[x] of codimension 1 are all of the form (x − α), α ∈ ℝ. Suppose |α| ≤ 1. Then there exists β ∈ ℝ, |β| ≤ 1, unique up to sign, with α² + β² = 1. The ideal P = (x − α, y − β) of R has codimension 1, so is maximal with R/P ≅ ℝ, and P ∩ S = (x − α). We claim that all prime ideals P lying over (x − α) when α ∈ ℝ, |α| ≤ 1, are of this form. If we extend scalars from ℝ to ℂ, i.e., we look at R ⊗_ℝ ℂ = ℂ[x, y]/(x² + y² − 1), then since every maximal ideal of ℂ[x, y] is the kernel of evaluation at some point of ℂ², P must be the contraction to R of the kernel of evaluation at (α, β), where β ∈ ℂ and α² + β² = 1. But since 1 − α² ≥ 0 in our case, any such β is real and satisfies |β| ≤ 1, α² + β² = 1, as required.

JONATHAN ROSENBERG

- (ii) Suppose P is a maximal ideal of R lying over $(x \alpha)$ in $S = \mathbb{R}[x]$, but this time with $|\alpha| > 1$. Then P must be the contraction to R of $(x - \alpha, y - \beta)$, where $\beta \in \mathbb{C}$ and $\alpha^2 + \beta^2 = 1$. Since $\beta^2 = 1 - \alpha^2 < 0$, $\beta = i\gamma$ is purely imaginary, with $\gamma \in \mathbb{R}, \gamma^2 = \alpha^2 - 1 \ge 0$. Then P contains $(y - \beta)(y - \overline{\beta}) = y^2 + \gamma^2 = y^2 + \alpha^2 - 1$ as well as $x - \alpha$. But $y^2 + \alpha^2 - 1$ is congruent mod $x^2 + y^2 - 1$ to $-(x^2 - \alpha^2)$, which already lies in $(x - \alpha)$, and in fact, in this case, $(x - \alpha)$ is maximal, with $R/(x - \alpha) \cong \mathbb{C}$, since $R/(x - \alpha) \cong \mathbb{R}[y]/(y^2 - 1 + \alpha^2) \cong \mathbb{C}$. So $P = (x - \alpha)$ is necessarily principal in this case.
- (iii) Finally, suppose P is a maximal ideal lying over a maximal ideal P' of codimension 2 in $S = \mathbb{R}[x]$, which must be of the form $P' = (x^2 + bx + c)$ with $b^2 4c < 0$. Then R/P is a finite extension field of $\mathbb{R}[x]/(x^2 + bx + c) \cong \mathbb{C}$, and $R/P \cong \mathbb{C}$. We know P must be the contraction to R of $(x - \alpha, y - \beta)$ for some $\alpha, \beta \in \mathbb{C}$ with $\alpha^2 + \beta^2 = 1$. Here α must satisfy $\alpha^2 + b\alpha + c = 0$, so $\alpha = -\frac{b}{2} \pm \frac{i}{2}\sqrt{4c - b^2}$. Without loss of generality, we can take the positive square root. (The other choice is conjugate under the Galois group of \mathbb{C} over \mathbb{R} , and thus won't change P.) Thus

$$\begin{split} \beta^2 &= 1 - \alpha^2 = b\alpha + 1 + c \\ &= -\frac{b^2}{2} + 1 + c + i\frac{b}{2}\sqrt{4c - b^2}. \end{split}$$

There are actually two subcases. Note that $P \cap \mathbb{R}[y]$ must be a maximal ideal in $\mathbb{R}[y]$, hence of codimension 1 or codimension 2. If $P \cap \mathbb{R}[y] = (y - \beta)$ is of codimension 1, then β is real and b = 0, 0 < c. This case is just like case (ii) above, and $P = (y - \beta)$ is principal. The other subcase is where α and β are both complex, so $P \cap \mathbb{R}[x]$ and $P \cap \mathbb{R}[y]$ are both of codimension 2 (in $\mathbb{R}[x], \mathbb{R}[y]$, respectively). In this case, β is the root of an irreducible quadratic $y^2 + b'y + c'$, where $b', c' \in \mathbb{R}$ can be computed explicitly from (1). And P contains both $x^2 + bx + c$ and $y^2 + b'y + c'$. However, since the images of x and y in R satisfy $x^2 + y^2 = 1$, P also contains f(x, y) = bx + b'y + c + c' + 1, which is a linear polynomial. We claim that P is just the principal ideal generated by f(x, y). This can be seen by making a linear change of coordinates $x' = (\cos \theta)x + (\sin \theta)y$, $y' = -(\sin \theta)x + (\cos \theta)y$ for suitable θ , to write R as $\mathbb{R}[x', y']/(x'^2 + y'^2 - 1)$, where x' and y' are linear combinations of x and y and (f) is now of the form $(x' - \alpha)$. (Here we're using the fact that the circle is invariant under rotations.) This reduces us to a previous case.

- (c) Since the class group of a Dedekind domain is generated by the non-principal prime ideals, we see from (b) that the class group is generated by the prime ideals P of the form $(x \alpha, y \beta)$, with $\alpha, \beta \in \mathbb{R}, \alpha^2 + \beta^2 = 1$.
 - (i) Given such a prime ideal P, let's show that P^2 is principal. As above, we may make a linear change of coordinates and suppose that P = (x 1, y) (in the new coordinate system). Then $P^2 = ((x 1)^2, 2(x 1)y, y^2)$. But $y^2 = 1 x^2 = -(x 1)(1 + x)$ in R, so all the generators of P^2 are divisible by x 1, and $P^2 \subseteq (x 1)$. On the other hand, $2(x 1) = (x 1)(x + 1) (x 1)^2 \in P^2$, so $(x 1) \subseteq P^2$, and $P^2 = (x 1)$ is principal. Thus the image of P in the class group is of order 2.

(1)

HOWEWORK #9 SOLUTIONS

(ii) Now let's take two distinct non-principal prime ideals P_1 and P_2 . As above, we may assume $P_1 = (x - 1, y)$, and $P_2 = (x - \alpha, y - \beta)$ with $\alpha, \beta \in \mathbb{R}, \alpha^2 + \beta^2 = 1$, $\alpha < 1$. The general case works basically the same way, but to simplify the algebra, let's take $\alpha = 0, \beta = 1$, so $P_2 = (x, y - 1)$. Then $P_1P_2 = ((x - 1)x, (x - 1)(y - 1), xy, y(y - 1))$. Then $(x - 1)(y - 1) - xy = 1 - x - y \in P_1P_2$, and we claim that in fact $P_1P_2 = (1 - x - y)$. Indeed, $P_1P_2 = ((x - 1)x, xy, 1 - x - y)$, since (x - 1)(y - 1) = xy + (1 - x - y), and $y(y - 1) = (1 - x^2) - y = (1 - x - y) - x(x - 1)$. But $(1 - x - y)^2 = 1 + x^2 + y^2 - 2x - 2y + 2xy = 2(1 - x - y) + 2xy$, so $xy \in (1 - x - y)$. Similarly, $(x - 1)x = -x(1 - x - y) - xy \in (1 - x - y)$, since $xy \in (1 - x - y)$. Thus all the generators of P_1P_2 lie in (1 - x - y), and $P_1P_2 = (1 - x - y)$ is principal. Thus the classes of P_1 and of P_2 are each other's inverses in the class group of R.

To summarize, we've shown that all non-principal prime ideals define the same element of the class group, and that the class group is of order 2.

- (2) For each of the following \mathbb{Z} -modules M, compute the P-adic completion M, where P = (2). Does \widehat{M} coincide with $\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M$? Note: in this problem, $\widehat{\mathbb{Z}}$ is the (2)-adic completion $\widehat{\mathbb{Z}}_{(2)}$ of \mathbb{Z} , or in other words, the 2-adic integers.
 - (a) $M = \mathbb{Z}/(3)$. Since (2) and (3) are relatively prime, PM = M, and thus $P^nM = M$ for all n, so $\widehat{M} = \varprojlim M/P^nM = 0$. We have $\widehat{M} \cong \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M$ since M is finitely generated. One can also check this directly since $\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M = \widehat{\mathbb{Z}}_{(2)}/(3) = 0$ (3 is a 2-adic unit).
 - (b) $M = \mathbb{Z}/(2)$. Note PM = 0, and thus $P^n M = 0$ for all n, so $\widehat{M} = \varprojlim M/P^n M = M = \mathbb{Z}/(2)$. We have $\widehat{M} \cong \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M$ since M is finitely generated. One can also check this directly since $\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M = \widehat{\mathbb{Z}}_{(2)}/(2) = \mathbb{Z}/(2)$.
 - (c) $M = \mathbb{Q}/\mathbb{Z}$. This is divisible, so $P^n M = M$ for all n and $\widehat{M} = \varprojlim M/P^n M = 0$. On the other hand, $\mathbb{Q}/\mathbb{Z} = \varinjlim C_m$, where C_m is a cyclic group of order m and where C_m embeds in C_n whenever m divides n. So $\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} M = \varinjlim \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} C_m = \varinjlim \widehat{\mathbb{Z}}/(m)$. If $m = 2^r s$, where s is odd, then s is a unit in $\widehat{\mathbb{Z}}$, so $\widehat{\mathbb{Z}}/(m) = \widehat{\mathbb{Z}}/(2^r) = \mathbb{Z}/(2^r)$. Thus the limit is the union of all 2-primary cyclic groups, or $\mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}/\mathbb{Z}$, which is NOT the same as \widehat{M} .
 - (d) $M = \mathbb{Q}$. This is divisible, so $P^n M = M$ for all n and $\widehat{M} = \varprojlim M/P^n M = 0$. But $\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a \mathbb{Q} -vector space of uncountable dimension.