
MATH 608K (Algebraic K-Theory)

Homework Assignment #4

K2 and Symbols

Partial Solutions

Jonathan Rosenberg

1. Do Exercise 4.4.28 in the book. In other words, show the following about the quaternion algebras
AF (a, b) (with basis 1, x, y, xy, and relations x2 = a ∈ F×, y2 = b ∈ F×, and xy = −yx) over a field
F of characteristic 6= 2:

(a) Show that AF (a, b) ∼= AF (b, a) is anti-isomorphic to itself, and thus defines an element of order 2 in
the Brauer group of F . (What this means in concrete terms is that AF (a, b)⊗F AF (a, b) ∼= M4(F ).)
Solution. The usual anti-involution, x 7→ x̄ = −x, y 7→ ȳ = −y, xy 7→ xy = −xy, gives an
isomorphism AF (a, b) → AF (a, b)op. But for any d-dimensional central simple algebra over F ,
A⊗F Aop ∼= Md(F ).

(b) Show that AF (a, b)⊗F AF (a, c) ∼= M2(AF (a, bc)), for a, b, c ∈ F×, that AF (a,−a) ∼= M2(F ), and
that AF (a, 1− a) ∼= M2(F ) for a 6= 1.
Solution. For the last two statements it suffices to prove the corresponding fact for the Hilbert
symbol, since AF (a, b) ∼= M2(F ) if and only if (a, b)F = 1. But vanishing of (a,−a)F and of
(a, 1− a)F is trivial, since a · 12 − a · 12 = 02 and a · 12 + (1− a) · 12 = 12.
The hard part of course is the first statement. One can prove it as follows. Let x and y be
anti-commuting generators of AF (a, b), with x2 = a, y2 = b, and let u and v be anti-commuting
generators of AF (a, c), with u2 = a, v2 = c. Then x⊗ u and x⊗ uv anti-commute in AF (a, b)⊗F

AF (a, c), and have squares x2 ⊗ u2 = a ⊗ a = a2(1 ⊗ 1) and x2 ⊗ uvuv = −x2 ⊗ u2v2 =
−a ⊗ ac = −a2c(1 ⊗ 1), so they generate a copy of AF (a2,−a2c) inside AF (a, b) ⊗F AF (a, c).
But since a2 is clearly a perfect square in F×, the Hilbert symbols (a2,−a2c)F is +1 and thus
AF (a2,−a2c) ∼= M2(F ). At the same time, x⊗1 and y⊗v anti-commute in AF (a, b)⊗F AF (a, c),
and have squares x2 ⊗ 1 = a ⊗ 1 = a(1 ⊗ 1) and y2 ⊗ v2 = bc(1 ⊗ 1), so they generate a copy of
AF (a, bc) inside AF (a, b)⊗F AF (a, c). Since x⊗1 and y⊗ v each commute with x⊗u and x⊗uv,
the copies of M2(F ) and of AF (a, bc) inside AF (a, b) ⊗F AF (a, c) commute with each other. So
we get a homomorphism AF (a, bc)⊗M2(F ) → AF (a, b)⊗F AF (a, c). Since all algebras are simple
and the dimensions agree, this must be an isomorphism.

(c) Show in this way that one gets a homomorphism {a, b} 7→ [AF (a, b)] from K2(F ) to a 2-torsion
subgroup of the Brauer group of F , generated by stable isomorphism classes of quaternion algebras
over F .

2. See if you can give an explicit calculation of K2(Q(i)), following the same outline as for K2(Q), except
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that remember you want to replace ordinary primes by primes in the Euclidean ring of Gaussian
integers. These primes, modulo multiplication by units, are: 1 + i, which up to a unit is the same as
1− i, a± bi with a > b > 0, a2 + b2 = p, when p is a prime ≡ 1 (4), and ordinary primes p ≡ 3 (4).

Solution. By the localization sequence, there is an exact sequence

K2(Z[i]) → K2(Q(i)) ∂−→
⊕

p

K1(Z[i]/p) → K1(Z[i]) → K1(Q(i)).

Here the sum is over all maximal ideals p of Z[i]. There is one of these, (1 + i), for which the quotient
Z[i]/p is isomorphic to F2, and over odd ordinary primes p, there are either one or two possibilities
for p. Since Z[i] is a Euclidean ring, K1(Z[i]) ∼= Z[i]× ∼= {±1,±i}, which maps injectively into
K1(Q(i)) ∼= Q(i))×. Thus the map ∂ is surjective. But it is also known that K2(Z[i]) is generated
by Steinberg symbols. Since Z[i]× ∼= {±1,±i} is cyclic with generator i =

√
−1, K2(Z[i]) is thus the

cyclic group generated by {i, i}. But {i, i}3 = {i, i3} = {i,−i} = 1, while {i, i}4 = {i, i4} = {i, 1} = 1,
so {i, i}3 = {i, i}4 = 1, {i, i} = 1, and K2(Z[i]) vanishes. Hence we obtain

K2(Q(i)) ∂−→∼=
⊕

p

K1(Z[i]/p) ∼=
⊕

p≡1 mod 4

(
F×p

)2 ⊕
⊕

p≡3 mod 4

F×p2

∼=
⊕

p≡1 mod 4

(
Cp−1 × Cp−1

)
⊕

⊕
p≡3 mod 4

Cp2−1.

The explanation of the calculation is as follows. F×2 is trivial anyway. Over p ≡ 1 mod 4, there are
two primes a ± bi with a2 + b2 = 1, a > b > 0, with Z[i]/(a ± bi) ∼= Fp, while p ≡ 3 mod 4 remains
prime and gives a quotient Z[i]/(p) ∼= Fp(i) isomorphic to Fp2 .

One can also arrive at the same result, without having to quote results about K2(Z[i]), by mimicking
the proof used for studying K2(Q). Let Am be the subgroup of K2(Q(i)) generated by symbols {z, w},
with z and w non-zero Gaussian integers of norm ≤ m. Then obviously K2(Q(i)) = lim−→Am. We see
that A1 is generated by {i, i}, which vanishes as above. So A2 is generated by {1 + i,−i} = 1 (since
(1 + i) + (−i) = 1) and by {1 + i, 1 + i}. But the latter is {1 + i,−1− i}{1 + i,−1} = {1 + i, (−i)2} =
{1 + i,−i}2 = 1, so A2 vanishes also. Then for m > 2, by factorization and bilinearity, it is clear
that Am = Am−1 unless m is an odd prime p ≡ 1 mod 4 or the square of an odd prime p ≡ 3 mod 4.
So the idea is to set up a homomorphism

(
F×p

)2 → Ap/Ap−1 if p is a prime p ≡ 1 mod 4 and a
homomorphism F×p2 → Ap2/Ap2−1 if p is a prime p ≡ 3 mod 4. Let’s do the latter, say. We have
Z[i]/(p) ∼= (Z/p) + i(Z/p) ∼= Fp[

√
−1] ∼= Fp2 , so an element of F×p2 is represented by z = x + iy with x

and y integers, |x|, |y| ≤ p−1
2 , x and y not both 0. The norm of this element is x2 + y2 < 2(p−1)2

4 < p2.
Thus {z, p} is an element of Ap. Map the residue class of z in F×p2 to the class of {z, p} modulo Ap2−1.
To show this is a homomorphism, suppose zw = up + r with u and r having norm less than p2. (This
is possible since Z[i] is a Euclidean ring.) Then we have

1 =
{

1− up

zw
,
up

zw

}
=

{ r

zw
,
up

zw

}
,

which by bilinearity is the same as

{r, up}{zw, up}−1{r, zw}−1{zw, zw}.
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Since {r, up} = {r, u}{r, p} with {r, u} ∈ Ap2−1, and similarly with the other terms, this identity
implies that {z, p}{w, p} = {r, p} modulo Ap2−1, and thus we have a homomorphism. Then one shows
that it’s injective and surjective. The other case is similar.
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