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2. Do Problem 2.5.20 in the text. In other words, show that if k is a field and R is the ring of upper-
triangular matrices over k, with I the ideal of strictly upper-triangular matrices, then K1(R, I) vanishes,
whereas if R′ is the subring of R consisting of upper-triangular matrices with both diagonal entries
equal, then I is also an ideal in R′ and K1(R′, I) ∼= k. You should use the fact that there are splittings
R // // R/I

uu and R′ // // R′/I
uu , so that (by the previous exercise), K1(R) ∼= K1(R/I) ⊕K1(R, I)

and K1(R′) ∼= K1(R′/I) ⊕ K1(R′, I), with R/I ∼= k × k and R′/I ∼= k. On the other hand, show
that R′ ∼= k[t]/(t2) is local, so K1(R′) is easily computable. Even if you can’t compute K1(R),
you should at least be able to show that every element of K1(R′, I) is killed under the natural map
K1(R′, I) → K1(R, I), so this is enough to show that the analogue of the Excision Theorem fails for
K1, even though it holds for K0.

Solution. Most people got all of this except for the part about computation of K1(R). The ideal I
is contained in the radical of R, so by the argument in the proof of Proposition 2.2.4 in the text, R×

surjects onto K1(R). And R× is given by

R× =
{(

a b
0 c

)
: a, b ∈ k×, c ∈ k

}
.

As long as k has more than 2 elements,
(

1 b
0 1

)
is a commutator in this group, since we can choose

a ∈ k×, a 6= 1, and then(
a 0
0 1

) (
1 (a− 1)−1b
0 1

) (
a 0
0 1

)−1 (
1 (a− 1)−1b
0 1

)−1

=
(

a a(a− 1)−1b
0 1

) (
a−1 −a−1(a− 1)−1b
0 1

)
=

(
1 (a− 1)−1b(−1 + a)
0 1

)
=

(
1 b
0 1

)
.

So as long as k has more than 2 elements, R×
ab
∼= k× × k× ∼= (R/I)× and (since R → R/I splits,

because of problem 1) K1(R, I) = 1.

There is one exceptional case, when k = F2. Then K1(R/I) ∼= k× × k× = 1 but R×
ab
∼= Z/2, with

generator g =
(

1 1
0 1

)
. However, if we look at GL(2, R, I), this is the group of 2× 2 matrices over R
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which are congruent to the identity modulo I, i.e., of the form
(

1 ∗
0 1

) (
0 ∗
0 0

)
(

0 ∗
0 0

) (
1 ∗
0 1

)
 .

(Henceforth we drop the inner parentheses and think of GL(2, R, I) as a group of 4× 4 matrices over
F2.) So GL(2, R, I) has order 16. Inside this group, g corresponds to the matrix

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = e12(1)

in the usual notation for elementary matrices in E(4, F2). In fact GL(2, R, I) also contains e32(1),
e14(1), and e34(1), as is generated by these four elementary matrices. Now E(2, R, I) is by definition
the smallest normal subgroup of E(2, R) containing the elementary 2 × 2 matrices with off-diagonal
elements in I, in other words, containing what we have called e14(1) and e34(1). But E(2, R) contains
the element corresponding to e42(1), and [e14(1), e42(1)] = e12(1), so g ∈ [E(R), E(R, I)] = E(R, I)
and goes to 0 in K1(R, I).

3. Show that the Whitehead group of G = (Z/2)× (Z/2) vanishes, by following some of the same ideas as
in the proof for Z/2 (Theorem 2.4.3 in the text). As a hint, note that ZG ∼= Z[s, t]/(s2−1, t2−1) ↪→ (Z)4

(via the four irreducible representations of G sending each of s and t to each of ±1), and identify the
image.

Solution. Let χ1 and χ2 be the homomorphisms G → {±1} defined by χ1(s) = −1, χ1(t) = 1,
χ2(s) = 1, χ2(t) = −1. Then 1 (the trivial representation G → {1}), χ1, χ2, and χ1χ2 all in-
duce ring homomorphisms ZG → Z, so (1, χ1, χ2, χ1χ2) gives a ring homomorphism ϕ : ZG → Z4.
The image is the lattice generated by (1, χ1, χ2, χ1χ2)(1), (1, χ1, χ2, χ1χ2)(s), (1, χ1, χ2, χ1χ2)(t), and
(1, χ1, χ2, χ1χ2)(st), or by (1, 1, 1, 1), (1,−1, 1,−1), (1, 1,−1,−1), and (1,−1,−1, 1). Since

det


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 = (add rows 2, 3 , 4 to first row)

= det


4 0 0 0
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 = 4det

−1 1 −1
1 −1 −1
−1 −1 1

 = 16 6= 0,

the homomorphism ϕ is injective and its image is a lattice of index 16 in Z; in fact, it’s clear that imϕ
is the subring Λ of Z defined by

Λ = {(a, b, c, d) ∈ Z4 : a ≡ b ≡ c ≡ d mod 2, a + b + c + d ≡ 0 mod 4}.

We have
Λ× = {(a, b, c, d) ∈ Z4 : a, b, c, d = ±1; 4 | (a + b + c + d)} ∼= {±1} ×G,
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so we need to show that SK1(Λ) = 1.

Now any element of SL(n, Λ) can be viewed as a 4-tuple (A,B, C, D) with A,B,C, D ∈ SL(n, Z),
A ≡ B ≡ C ≡ D ≡ 0 mod 2, A + B + C + D ≡ 0 mod 4. We need to show such a 4-tuple can be
reduced to 1 using elementary operations over Λ.

As many members of the class realized, (A−1, A−1, A−1, A−1) lies in E(n, Λ), so multiplying by this,
we can assume A = 1. Then (1, B−1, B−1, 1) also lies in E(n, Λ) (the congruence conditions come from
the fact that B ≡ 1 mod 2, hence B−1 ≡ 1 mod 2 and 2 + 2B−1 ≡ 2 + 2 ≡ 0 mod 4), so multiplying
by this, we can assume B = 1 also. Similarly, we can reduce to the case C = 1. So we come down to
the case of a 4-tuple of matrices of the form (1, 1, 1, D), where 3 + D ≡ 0 mod 4, or in other words,
D ≡ 1 mod 4. So the problem reduces to showing that SK1(Z, (4)) is trivial.

There are several ways of proving this, but the following is probably easiest. As in the book (Theorem
2.5.12) one can reduce to considering “relative Mennicke symbols” [a, b](4), where a, b ∈ Z and a ≡ 1,
b ≡ 0 mod 4. One has the relations [a, b](4) = [a + bc, b](4) = [a, b + 4ca](4) for c ∈ Z. Let b = 4k; then
we can write these as

[a, 4k](4) = [a + 4kc, 4k](4) = [a, 4(k + ca)](4).

If a = 1, the symbol [a, 4k](4) is trivial, and we need to show we can reduce to this case.

If 4|k| < |a|, then writing a = 4kq + r with |r| < 4|k| and using the first relation above to replace a by
a − 4kq, we can reduce the magnitude of a. In fact, we can come down to the case where |a| < 2|k|,
since if 2|k| < |a| < 4|k|, we can replace a by a± 4k, with the sign chosen to make this smaller than a
in absolute value. Once we’ve reduced to the case |a| < 2|k|, we can replace 4k by 4(k± a) and reduce
the magnitude of k. Iterating these processes, we can continue reducing our symbol until a = 1.
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