Math 620, Fall, 1999 Homework Set 2: Dedekind Domains Solutions to Selected Problems

2. Let $R = \mathbb{Z}[\sqrt{-3}]$, with field of fractions $F = \mathbb{Q}[\sqrt{-3}]$. From the last homework set, R is not integrally closed in F, and hence is not a Dedekind domain. Exhibit a fractional ideal in R that does not have an inverse. Is this fractional ideal a projective R-module?

Solution. Let $I=(2,1-\sqrt{-3})$, an ideal of R. Let $J=\{x\in F:xI\subseteq R\}$. If I were to be invertible, this would have to be its inverse. Then for $x=a+b\sqrt{-3}$ $(a,b\in\mathbb{Q})$ to lie in J, we have the conditions $2(a+b\sqrt{-3})\in R$, or $2a\in\mathbb{Z}$ and $2b\in\mathbb{Z}$, and $(1-\sqrt{-3})(a+b\sqrt{-3})\in R$, or $a+3b\in\mathbb{Z}$ and $b-a\in\mathbb{Z}$. These conditions say exactly that $a=\frac{m}{2}, b=\frac{n}{2}$, with $m,n\in\mathbb{Z}$ of the same parity. But then JI is spanned by the $m+n\sqrt{-3}$ and by the $\frac{m+3n}{2}+\frac{m-n}{2}\sqrt{-3}$, with m and n of the same parity. This lattice is spanned by $2, 2\sqrt{-3}$, and $1+\sqrt{-3}$, so it contains 2 but not 1. In particular, $IJ\neq R$, so I is not invertible as a fractional ideal.

Moreover, I can't be a projective R-module either. The reason is simple. If I were projective, then the map of R-modules $R^2 \to I$ given by $(x,y) \mapsto 2x + (1-\sqrt{-3})y$ would have to split. The splitting map would have to be given by $x \mapsto (yx,zx)$ for some $y,z \in F$, where $yx,zx \in R$ and $2yx + (1-\sqrt{-3})zx = x$ for $x \in I$. This is another way of saying that I would have to be invertible as a fractional ideal.

4. Let $R = \mathbb{R}[x,y]/(x^2+y^2-1)$, the ring of real-valued polynomial functions on the circle $x^2+y^2=1$ in the x-y plane. Show that R is a Dedekind domain. (Hint: Obviously R is Noetherian. Show that every non-zero prime ideal is maximal and that R is integrally closed in its field of fractions.) For extra credit, but hard: See if you can show C(R) has order 2, by finding all the maximal ideals and determining which ones are principal.

Solution. Let $D = \mathbb{R}[x]$, a PID, and let K be its field of fractions $\mathbb{R}(x)$. Note that $y^2 - (1 - x^2)$ is irreducible in K[y], so R sits in the field $L = K(\sqrt{1 - x^2})$, a Galois extension of K of degree [L : K] = 2. Let D' be the integral closure of D in L. Clearly $R \subseteq D'$, and since D' is a Dedekind domain, it is enough to show that $D' \subseteq R$. Let $f + yg \in D'$, where $y^2 = 1 - x^2$ and $f, g \in K$. Note that the non-trivial element of $\operatorname{Gal}(L/K)$ sends y to -y.

If g = 0, then $f \in K \cap D' = D$, since D is a PID and is thus integrally closed. So we may assume $g \neq 0$. Then f + yg has minimal polynomial

$$(t - (f + yg))(t - (f - yg)) = (t - f)^2 - y^2g^2$$
$$= t^2 - 2ft + (f^2 - y^2g^2),$$

and the condition that f+yg be integral over D says that $2f\in D$ and $f^2-y^2g^2\in D$. Since $\frac{1}{2}\in\mathbb{R}\subset D$, $f\in D$ and thus $y^2g^2\in D$, or $(1-x^2)g^2\in D$. Since the irreducible polynomials $1\pm x$ only divide $1-x^2$ once, they can't divide the denominator of g, since otherwise they would divide the denominator of g^2 twice and not cancel out. So $g\in D$, proving that $f+yg\in D[y]/(x^2+y^2-1)=R$. So R=D' is a Dedekind domain.

Now let's classify the maximal ideals of R according to the way the maximal ideals \mathfrak{p} of $D = \mathbb{R}[x]$ split in R. Note that since every irreducible polynomial in $\mathbb{R}[x]$ has degree 2, we

have two cases to consider, $\mathfrak{p}=(x-a), a\in\mathbb{R}$, and $\mathfrak{p}=(x^2+bx+c), b, c\in\mathbb{R}, b^2-4c<0$. In the first case, $R/\mathfrak{p}R$ is generated over $D/\mathfrak{p}\cong\mathbb{R}$ by y with $y^2=1-x^2\equiv 1-a^2$, so if $|a|>1,\ R/\mathfrak{p}R\cong\mathbb{C}$, and if $|a|<1,\ R/\mathfrak{p}R\cong\mathbb{R}\oplus\mathbb{R}$, and if $|a|=1,\ \mathfrak{p}$ ramifies and $R/\mathfrak{p}R\cong\mathbb{R}[y]/(y^2)$. Thus if |a|>1, the principal ideal (x-a) of R is maximal, and if |a|<1, it splits into two maximal ideals, $(x-a,y-\sqrt{1-a^2})$ and $(x-a,y+\sqrt{1-a^2})$, both non-principal. Over (x+1) or (x-1), there is a unique maximal ideal of R, (x+1,y) or (x-1,y). These are also non-principal.

Now consider the second case, where $\mathfrak{p}=(x^2+bx+c)$ with $b^2-4c<0$. Then $R/\mathfrak{p}R$ is generated over $D/\mathfrak{p}\cong\mathbb{C}$ by y with $y^2=1-x^2\equiv 1+c+bx$. So $R/\mathfrak{p}R\cong\mathbb{C}\oplus\mathbb{C}$ and there are two maximal ideals \mathfrak{P} over \mathfrak{p} in this case, also, corresponding to the two complex square roots of 1+c+bx. If b=0 and c>0, then these maximal ideals are generated by $y\pm\sqrt{1+c}$. Otherwise, x and y both map in $R/\mathfrak{P}\cong\mathbb{C}$ to non-real complex numbers, hence for some $d\neq 0$ in \mathbb{R} , x+dy maps to a real number e, and \mathfrak{P} turns out to be a principal ideal (x+dy-e), with the line x+dy-e=0 not meeting the circle $x^2+y^2=1$ in the real plane \mathbb{R}^2 .

To summarize, we see that the maximal ideals of R are of two types: principal ideals generated by linear polynomials (corresponding to lines in \mathbb{R}^2 not intersecting the unit circle), and non-principal ideals of the form $\mathfrak{P} = (x-a,y-b), a,b \in \mathbb{R}$, where $a^2+b^2=1$. Since every fractional ideal has a unique factorization into maximal ideals, C(R) is generated by the classes of the ideals $\mathfrak{P} = (x-a,y-b), a,b \in \mathbb{R}$, where $a^2+b^2=1$.

Now to show that C(R) is cyclic of order 2, we simply observe that for $\mathfrak{P}=(x-a,y-b)$, $a^2+b^2=1$, $\mathfrak{P}^2=((x-a)^2,(y-b)^2,(x-a)(y-b))$. This contains $(x-a)^2+(y-b)^2=2-2ax-2by$ and thus ax+by-1, and it's easy to see that $\mathfrak{P}^2=(ax+by-1)$. (Note by the way that the line ax+by-1=0 is the tangent line to the unit circle at the point (a,b).) So the class of \mathfrak{P} is of order 2 in C(R). On the other hand, if $\mathfrak{P}_j=(x-a_j,y-b_j)$, $a_j^2+b_j^2=1$, j=1,2, with $(a_1,b_1)\neq (a_2,b_2)$, then $\mathfrak{P}_1\mathfrak{P}_2$ is the principal ideal generated by the linear polynomial corresponding to the line joining (a_1,b_1) and (a_2,b_2) in \mathbb{R}^2 . So $\mathfrak{P}_1\mathfrak{P}_2=\mathfrak{P}_1\mathfrak{P}_2^{-1}$ is trivial in C(R) and \mathfrak{P}_1 and \mathfrak{P}_2 define the same element of C(R).