Math 620, Fall, 1999
Homework Set 2: Dedekind Domains
Solutions to Selected Problems

2. Let R = Z[\/-3], with field of fractions F = Q[v/—3|. From the last homework set,
R is not integrally closed in F', and hence is not a Dedekind domain. Exhibit a fractional
ideal in R that does not have an inverse. Is this fractional ideal a projective R-module?

Solution. Let I = (2,1 —+/—3), an ideal of R. Let J = {x € F : I C R}. If I were to be
invertible, this would have to be its inverse. Then for z = a+by/—3 (a, b € Q) to lie in J, we
have the conditions 2(a+bv/—3) € R, or 2a € Z and 2b € Z, and (1—+/=3)(a+b\/-3) € R,
or a+3b € Z and b—a € Z. These conditions say exactly that a = 5, b = 5, withm, n € Z
of the same parity. But then J1 is spanned by the m+mn+/—3 and by the 2432 4 m—n /3
with m and n of the same parity. This lattice is spanned by 2, 2v/—3, and 1 + /=3, so it
contains 2 but not 1. In particular, IJ # R, so I is not invertible as a fractional ideal.

Moreover, I can’t be a projective R-module either. The reason is simple. If I were
projective, then the map of R-modules R? — I given by (x,y) — 2z + (1 — v/=3)y would
have to split. The splitting map would have to be given by z — (yz, zz) for some y, z € F,
where yz, zz € R and 2yx + (1 — /—3)zx = z for = € I. This is another way of saying
that I would have to be invertible as a fractional ideal.

4. Let R = R[z,y]/(x? +y? — 1), the ring of real-valued polynomial functions on the
circle z2 + y? = 1 in the z-y plane. Show that R is a Dedekind domain. (Hint: Obviously
R is Noetherian. Show that every non-zero prime ideal is maximal and that R is integrally
closed in its field of fractions.) For extra credit, but hard: See if you can show C(R) has
order 2, by finding all the maximal ideals and determining which ones are principal.

Solution. Let D = Rz|, a PID, and let K be its field of fractions R(z). Note that
y? — (1 — z?) is irreducible in KJy], so R sits in the field L = K (V1 —z2), a Galois
extension of K of degree [L : K] = 2. Let D’ be the integral closure of D in L. Clearly
R C D', and since D’ is a Dedekind domain, it is enough to show that D’ C R. Let
f+yg € D', where y2> = 1 — 22 and f, g € K. Note that the non-trivial element of
Gal(L/K) sends y to —y.

If g =0, then f € KND' = D, since D is a PID and is thus integrally closed. So we
may assume g # 0. Then f + yg has minimal polynomial

(t—(f +v9)(t — (f —y9)) = (t = f)? — y?9°
=t = 2ft+(f* - y’9"),

and the condition that f + yg be integral over D says that 2f € D and f2 — y2¢? € D.
Since 1 € R C D, f € D and thus y?¢? € D, or (1 — z?)g? € D. Since the irreducible
polynomials 1 &+ z only divide 1 — 2 once, they can’t divide the denominator of g, since
otherwise they would divide the denominator of ¢g? twice and not cancel out. So g € D,
proving that f +yg € D[y]/(z?> +y?> —1) = R. So R = D’ is a Dedekind domain.

Now let’s classify the maximal ideals of R according to the way the maximal ideals p of

D = Rz] split in R. Note that since every irreducible polynomial in R[z] has degree 2, we
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have two cases to consider, p = (r —a),a € R, and p = (22 +bx+c), b, c € R, b2 —4c < 0.
In the first case, R/pR is generated over D/p = R by y with 2 = 1 — 22 = 1 — a?, so
if la] > 1, R/pR =2 C, and if |a] < 1, R/pR =2 R R, and if |a|] = 1, p ramifies and
R/pR = Ry]/(y?). Thus if |a| > 1, the principal ideal (z — a) of R is maximal, and if
la| < 1, it splits into two maximal ideals, (x — a,y — V1 —a?) and (z — a,y + V1 — a?),
both non-principal. Over (z+1) or (z —1), there is a unique maximal ideal of R, (z+1, y)
or (z — 1,y). These are also non-principal.

Now consider the second case, where p = (22 + bz + ¢) with b2 — 4¢ < 0. Then R/pR
is generated over D/p =2 C by y withy? =1—22=1+c+bx. So R/pR = C® C and
there are two maximal ideals 3 over p in this case, also, corresponding to the two complex
square roots of 1 +c+ bzx. If b = 0 and ¢ > 0, then these maximal ideals are generated by
y£+/1+ c. Otherwise, x and y both map in R/ = C to non-real complex numbers, hence
for some d # 0 in R, z + dy maps to a real number e, and P turns out to be a principal
ideal (z + dy — e), with the line z + dy — e = 0 not meeting the circle z? + 32 = 1 in the
real plane R?.

To summarize, we see that the maximal ideals of R are of two types: principal ideals
generated by linear polynomials (corresponding to lines in R? not intersecting the unit
circle), and non-principal ideals of the form B = (z — a,y — b), a, b € R, where a? + b% =
1. Since every fractional ideal has a unique factorization into maximal ideals, C(R) is
generated by the classes of the ideals f = (z — a,y — b), a, b € R, where a? + b? = 1.

Now to show that C'(R) is cyclic of order 2, we simply observe that for B = (z—a,y—b),
a?+b02=1,P?=((z —a)? (y—b)% (x —a)(y —b)). This contains (z —a)?+ (y —b)% =
2 — 2ax — 2by and thus az + by — 1, and it’s easy to see that B? = (ax + by — 1). (Note
by the way that the line ax + by — 1 = 0 is the tangent line to the unit circle at the point
(a,b).) So the class of P is of order 2 in C'(R). On the other hand, if B; = (z —a;,y — b;),
a? + b? =1, j =1, 2, with (a1,b1) # (az,b2), then 1P is the principal ideal generated
by the linear polynomial corresponding to the line joining (ai, b1) and (az,b2) in R?. So
PrPo = PP, ! is trivial in C(R) and P, and Py define the same element of C(R).



