MATH 632, Homework #3: An application of Hilbert Spaces and the Riesz Representation Theorem: The Bergman Kernel

Prof. Jonathan Rosenberg

due Monday, September 25, 2006

Let $\Omega \subset \mathbb{C}$ be a non-empty connected open set in the complex plane, and define the *Bergman space* of Ω , $A^2(\Omega)$, to be the subspace of $L^2(\Omega)$ (with respect to Lebesgue measure in the plane) consisting of L^2 analytic functions. Of course, this space may be empty (there are no L^2 analytic functions on all of \mathbb{C}), but if Ω is bounded, it clearly contains the analytic functions that extend to be continuous on the closure of Ω .

- 1. Show that $A^2(\Omega)$ is a Hilbert space. Since, by definition, it is a subspace of $L^2(\Omega)$ and you may assume L^2 is complete, the only issue is to show that an L^2 -limit of analytic functions is analytic.
- 2. Show that if $z \in \Omega$, then $f \mapsto f(z)$ is a bounded linear functional on $A^2(\Omega)$. (Hint: by the mean value property of analytic functions, if f is analytic, then f(z) is the average of f over a small disk D_z centered at z, so

$$f(z) = \frac{1}{\operatorname{area}(D_z)} \iint_{D_z} f(z) \, dx \, dy,$$

where z = x + iy and dx dy is Lebesgue measure. This can be rewritten to say that $f(z) = \langle f, g_z \rangle$ for a suitable L^2 -function g_z .)

3. Deduce that there is a function K(z, z'), in $A^2(\Omega)$ as a function of z for fixed z', such that

$$f(z') = \langle f, K(\cdot, z') \rangle = \iint_{\Omega} f(z) \overline{K(z, z')} \, dx \, dy.$$

4. Now specialize to the case when Ω is the unit disk in \mathbb{C} . Compute an explicit orthonormal basis for $A^2(\Omega)$. (Apply the Gram-Schmidt process to 1, z, z^2, \cdots . It helps to normalize the Lebesgue measure by using $\frac{1}{\pi} dx dy$ in place of dx dy; that way, Ω has total area 1.) Finally, compute (explicitly) the Bergman kernel K.