MATH 632, Homework #4: More on Duality of Banach Spaces and Weak-* Convergence

Prof. Jonathan Rosenberg

due Monday, October 16, 2006

Let $C(S^1)$ be the space of continuous functions on the circle, and let $C^1(S^1)$ be the space of C^1 functions on the circle. The latter consists of functions whose derivative is continuous. In this problem, we identify functions on S^1 with functions on [0, 1] with the same values at 0 at as 1.

1. Show that $C^1(S^1)$ is a Banach space under the norm

$$\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$$

where $\| \|_{\infty}$ denotes the usual sup norm for continuous functions.

2. There is an obvious continuous map $f \mapsto f'$ from $C^1(S^1)$ to $C(S^1)$. Show that the kernel of this map is one-dimensional and that the image is of codimension 1. Use this to show that

$$||f||' = |f(0)| + ||f'||_{\infty}$$

is an equivalent norm on $C^1(S^1)$, and that a linear functional λ on $C^1(S^1)$ is continuous if and only if its restriction to functions vanishing at 0 is given by $f \mapsto \int f' d\mu$, for some measure μ on S^1 . Show also that μ is determined only modulo multiples of Lebesgue measure.

- 3. Following the same idea as in Lax's proof (Chapter 11) that there is a continuous function whose Fourier series does not converge everywhere, study the pointwise convergence of Fourier series for functions in $C^1(S^1)$. By #2 above, it suffices to restrict attention to functions which are 0 at 0, and to study the linear functionals λ_n given by taking the *n*-th partial sum of the Fourier series, evaluated at 0. Use integration by parts to rewrite λ_n in the standard form $f \mapsto \int f' d\mu_n$, and show that $\|\mu_n\| \to 0$, and deduce that the Fourier series of a function in $C^1(S^1)$ does converge pointwise at 0. (Note that you are showing that if $f \in C^1(S^1)$ and f(0) = 0, then $\lambda_n(f) \to 0$. Then you get the general case by adding in a constant.) Then since there is nothing special about the point 0 (just change coordinates), deduce that the Fourier series of a C^1 function converges pointwise to the function.
- 4. Show, however, that the Fourier series of a C^1 function does *not* necessarily converge to the function in the C^1 topology.