MATH 740, Fall 2012 Riemannian Geometry Homework Assignment #1: Manifolds and Tangent Vectors

Jonathan Rosenberg

due Monday, September 10, 2012

1. Suppose $D: C^{\infty}(\mathbb{R}) \to \mathbb{R}$ is linear and satisfies the Leibniz product rule for directional derivatives at 0:

$$D(fg) = D(f)g(0) + f(0)D(g)$$
(1)

for all $f, g \in C^{\infty}(\mathbb{R})$.

- (a) Show that (1) implies D(1) = 0. (Here 1 means the constant function with value 1 everywhere.)
- (b) Let c = D(x), where x is the usual coordinate on \mathbb{R} . Show that D(f) = cf'(0) for any $f \in C^{\infty}(\mathbb{R})$. Hint: Because of (a), it's enough to consider functions f with f(0) = 0. For such functions,

$$h(x) = \begin{cases} f'(0), & x = 0, \\ \frac{f(x)}{x}, & x \neq 0, \end{cases}$$

is continuous and differentiable, even C^{∞} , because of L'Hôpital's Rule. So f(x) = x h(x) and D(f) = ch(0) = cf'(0) by (1).

- (c) Deduce that D is automatically *local* at 0, i.e., that D(f) = 0 if f vanishes in some neighborhood of 0. Also deduce that D is automatically *continuous* in the C^{∞} topology, that is, if f_j and f are all supported in the same neighborhood of 0, and if $f_j^{(n)} \to f^{(n)}$ uniformly for all n, then $D(f_j) \to D(f)$. (Actually you only need this for n = 1.)
- 2. Generalize problem 1 to *n* dimensions. In other words, if $D: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is linear and satisfies (1) for all $f, g \in C^{\infty}(\mathbb{R}^n)$, show that

$$D(f) = \sum_{j=1}^{n} c_j \frac{\partial f}{\partial x_j}(0) \quad \text{for all } f \in C^{\infty}(\mathbb{R}^n),$$
(2)

where the constants c_j can be computed as $c_j = D(x_j)$. You'll need the fact (which can be deduced from the multi-variable Taylor's Theorem) that if f(0) = 0, then $f(x) = \sum_{j=1}^{n} x_j h_j(x)$, where $h_j(0) = \frac{\partial f}{\partial x_j}(0)$.

- 3. Deduce from problem 2 and reduction to coordinate patches that it makes sense on a smooth manifold M^n to define the tangent space $T_x M$ to M at x as we did in class, and that this gives an *n*-dimensional vector space at each point.
- 4. The Riemann sphere \mathbb{CP}^1 is the one-point compactification of the complex plane \mathbb{C} . In other words, as a set it is $\mathbb{C} \cup \{\infty\}$, and if $z_j \in \mathbb{C}$, then $z_j \to \infty$ if $|z_j| \to \infty$. We make \mathbb{CP}^1 into a smooth manifold by covering it with two coordinate charts: \mathbb{C} with the identity map, and $\mathbb{CP}^1 \setminus \{0\} = (\mathbb{C} \setminus \{0\}) \cup \{\infty\}$ with the map $\mathbb{CP}^1 \setminus \{0\} \to \mathbb{C}$ defined by $\infty \mapsto 0$ and $z \mapsto \frac{1}{z}$ for $z \in \mathbb{C}, z \neq 0$. Show that this atlas makes \mathbb{CP}^1 into a smooth manifold, and that the map $z \mapsto z^n, n \in \mathbb{Z}$, extends to a smooth map $\mathbb{CP}^1 \to \mathbb{CP}^1$ sending ∞ to ∞ if n > 0, to 0 if n < 0, and to 1 if n = 0.