MATH 740, Fall 2012 Riemannian Geometry Homework Assignment #3: Riemannian Metrics and Connections

Jonathan Rosenberg

due Friday, September 28, 2012

- 1. (a) Let g be a Riemannian metric on the open disk $\overset{\circ}{D}^{n}(r)$ of radius r around 0 in Euclidean n-space \mathbb{R}^{n} . Let x be a point in $\overset{\circ}{D}^{n}(r)$, say with $|x| = \varepsilon < r$, and let λ be the minimal eigenvalue of g(x) for $|x| \le \varepsilon$. (Here we think of g as a smooth map from $\overset{\circ}{D}^{n}(r)$ to positive-definite $n \times n$ matrices. The minimum exists by a simple compactness argument.) Show that the Riemannian distance from 0 to x is *bounded below* by $\sqrt{\lambda} \varepsilon$. In particular it's not zero. The idea is to get a lower bound on $\int_{0}^{a} g(\gamma'(t), \gamma'(t))^{1/2} dt$ for any curve $\gamma: [0, a] \to \overset{\circ}{D}^{n}(r)$ with $|\gamma(a)| = \varepsilon$.
 - (b) Deduce from (a) that the Riemannian distance between distinct points x and y on any connected Riemannian manifold cannot be 0. (Hint: You can assume y corresponds to 0 in some coordinate patch.)
- 2. Let ∇ be an affine connection on \mathbb{R} .
 - (a) Show that ∇ is determined by a single smooth function $\Gamma = \Gamma_{1,1}^1$, where $\nabla_{\partial/\partial x} \left(\frac{\partial}{\partial x}\right) = \Gamma_{1,1}^1(x) \frac{\partial}{\partial x}$. Then show that ∇ is automatically torsion-free; in other words, that for any vector fields X and Y, $\nabla_X Y \nabla_Y X = [X, Y]$. Hint: Write X and Y in terms of $\frac{\partial}{\partial x}$.
 - (b) In terms of Γ , what is the parallel transport of the tangent vector $\frac{\partial}{\partial x}$ at 0 to a point x? Why does it only depend on x and not on the curve used to get there?