MATH 740, Fall 2012 Riemannian Geometry Homework Assignment #7: Noncompact Manifolds and Completeness

Jonathan Rosenberg

due Friday, November 16, 2012

- 1. Consider the Riemannian metric g on \mathbb{R} which is $\frac{1}{\lambda(x)}$ times the usual metric, where λ is a positive smooth function.
 - (a) Compute the Riemannian distance from 0 to x (where $x \in \mathbb{R}$ is either positive or negative) and show that the metric completion of (\mathbb{R}, g) can be any of $(-\infty, \infty)$, $(-\infty, \infty]$, $[-\infty, \infty)$, or $[-\infty, \infty]$.
 - (b) Show that only in the first case is \mathbb{R} complete, and derive a necessary and sufficient condition for this in terms of the conformal factor λ . Also show that (\mathbb{R}, g) is extendable in the other cases.
 - (c) Show that in all cases, (\mathbb{R}, g) has the property that any two points can be joined by a length-minimizing geodesic segment, so that this property is not equivalent to complete-ness.
- 2. Do problem #4 in Do Carmo, Ch. 7, showing that the universal cover of $\mathbb{R}^2 \setminus \{(0,0)\}$, with the pull-back of the Euclidean metric on \mathbb{R}^2 is not complete but also not extendable. Thus completeness is not equivalent to non-extendability.
- 3. Do problem #12 in Do Carmo, Ch. 7, showing that if M is a connected Riemannian manifold with the property that for all $p, q \in M$, there is an isometry of M taking p to q, then M is necessarily complete.