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1. A connected Riemannian manifold M is called a Riemannian symmetric space if, for all
x ∈ M , there exists an isometry sx of M fixing x and with dsx = −id. (Thus sx reverses the
direction of all geodesics starting at x.)

(a) Prove that a Riemannian symmetric space is complete. (Show that all geodesics are
infinitely extendable.)

Solution. We show that M is geodesically complete. Let γ be a geodesic in M with γ(0) =
x, γ′(0) a unit vector in TxM . Suppose γ is defined on an open interval containing [0, a].
Let y = γ(a); then dsy sends γ′(a) to −γ′(a), so that if we define γ(a + t) = sy(γ(a− t))
for 0 ≤ t ≤ a, this extends the old definition of γ near t = a and allows γ to be defined
on [0, 2a]. Continuing by induction, we get γ defined for all time. �

(b) Prove that if M is a Riemannian symmetric space, then the group of isometries G of
M acts transitively on M , so that M can be identified with G/H for some Lie groups
G ⊃ H.

Solution. By (a) and the Hopf-Rinow Theorem, any two points x and y in M can be
joined by a geodesic γ, say with γ(0) = x and γ(a) = y. Let z = γ(a/2). Then sy sends
x to y. �

(c) Show that with respect to the notation of (b), H is fixed by an automorphism σ of G of
period 2, and that the connected component of the identity in H is exactly the connected
component of the identity in Gσ. (Hint: Let σ be conjugation by the symmetry sx at
x = eH ∈ G/H.)

Solution. Let G be the isometry group of M , which is automatically a Lie group. Fix
a basepoint x ∈ M and let H be its stabilizer. This is a closed subgroup of G (since
fixing a point is a closed condition). Let σ be the inner automorphism defined by sx.
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Since sx has order 2, σ is an involution, and since sx ∈ H, σ maps H to itself. But
more is true. We have a representation H → O(TxM) defined by ϕ 7→ (dϕ)x, and it’s
faithful (injective) since if (dϕ)x = id, then ϕ fixes all geodesics starting at x, and thus
fixes all of M (since every point in M can be reached by such a geodesic). Under this
representation H → O(TxM), sx goes to −1, and thus σ goes to conjugation by −1,
which is the identity. Thus σ is the identity on H and H ⊆ Gσ.

Now we need to show that the connected component of the identity in Gσ lies in H.
For this it’s enough to show that if ϕ ∈ Gσ and ϕ is close to the identity, then ϕ ∈ H.
Choose such a ϕ and let ϕ(x) = y. Since ϕ is close to the identity, y is close to x; we
need to show y = x. Since y is close to x, we can assume y = γ(a) for some small a ≥ 0
and γ a unit-speed geodesic with γ(0) = x. The fact that ϕ ∈ Gσ means (by definition
of σ) that ϕ commutes with sx. So

γ(a) = y = ϕ(x) = sx ◦ ϕ ◦ sx(x) = sx(ϕ(x)) = sx(γ(a)) = γ(−a).

For small a, the exponential map is a diffeomorphism on the ball of radius a, so this
forces a = 0 and y = x. �

(d) Show that all complete simply connected manifolds of constant curvature are Riemannian
symmetric spaces. Find G and H in each of the cases R

n, Sn, and Hn.

Solution. Checking the hypothesis for each of these spaces is easy. Since the isometry
groups act transitively on R

n, Hn and Sn, it’s enough to construct a symmetry at one
basepoint in each. For R

n, or for Hn in the “ball realization” (see Do Carmo, p. 177),
take the basepoint to be 0 and let s be multiplication by −1. For Sn ⊂ R

n+1, take
the basepoint to be the north pole (0, · · · , 0, 1) and let s(x1, · · · xn, xn+1) = (−x1, · · · −
xn, xn+1). The corresponding homogeneous spaces are R

n = (Rn
⋊ O(n))/O(n) and

(for n ≥ 2) Sn = O(n + 1)/O(n), Hn = O(n, 1)+/O(n). (Note: The group O(n, 1) of
isometries of Lorentz space R

n,1 actually has 4 components. Since Hn can be identified
with a single sheet of a two-sheeted hyperboloid in R

n,1, we need to cut down to the
subgroup O(n, 1)+ of index 2 that sends this sheet back to itself rather than to the
opposite sheet. This subgroup still has two components, since there are orientation-
reversing isometries of the hyperboloid.) �

2. Let Mn be a Riemannian manifold, x ∈ M . Compute the first two terms in the series
expansion of volBr(x) as a function of r. You should find that the leading term only depends
on the dimension n, not the metric, and that the next term after that involves Rx, the scalar
curvature at x. If the Ricci curvature controls the growth of volumes of balls, why does it
not appear in these two terms?

Solution. The result of this problem can be found in the paper by Alfred Gray, “The volume
of a small geodesic ball of a Riemannian manifold,” Michigan Math. J. 20 (1973), 329–344.
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Recall that we had the formula

vol Br(x) =

∫

S

∫ min(r,cut(v))

0
(detJ(t)) dt dv,

where v runs over S the unit ball S in TxM and cut(v) is the distance out to the cut
locus, and J is an (n − 1) × (n − 1) matrix of Jacobi fields Ji along the geodesic γ with
γ(0) = x, γ′(0) = v. Here Ji(0) = 0 and the J ′

i(0) = ei, i = 1, · · · , n − 1, are an orthonormal
basis for v⊥. When we compute the series expansion for small r, we can ignore the cut
locus and use the series expansion of Ji(t). The Jacobi equation J ′′

i + R(γ′, Ji)γ
′ = 0 after

differentiating gives J ′′′

i (0) + R(v, ei)v = 0 or J ′′′

i (0) = −R(v, ei)v, so the Taylor series of Ji

is: Ji(t) ≈ tei −
1
6R(v, ei)vt3 + · · · . Thus the leading term in our expansion is just

vol Br(x) ≈

∫

S

∫ r

0
tn−1 dt dv = vol(S)

rn

n
= vol Br(0),

where Br(0) is the ball of radius r in Euclidean space. Since det(tIn−1 + t3A + · · · ) ≈

tn−1 + tn+1 tr A, det J ≈ tn−1 − 1
6 tn+1 Ricx(v), and the next term of the expansion of Br(x) is

−
1

6

∫

S

∫ r

0
tn+1 Ricx(v) dt dv = −

1

6

(
∫ r

0
tn+1 dt

)(
∫

S

Ricx(v) dv

)

= −
1

6
vol(S)

rn+2

n + 2

Rx

n
= −

r2

6(n + 2)
Rx vol Br(0).

Here we’ve used the result of Do Carmo, Ch. 4, Exercise 9. Thus the expansion starts with

vol Br(0)
(

1 − r2

6(n+2)Rx + · · ·

)

. Only the scalar curvature appears since we integrate the

Ricci curvature over the sphere and thus the Ricci tensor is “averaged out.” But when we
look at volumes of larger balls, the asymmetry of the Ricci tensor shows up. �

3. Do problem 4 in Chapter 9 of Do Carmo, that any closed geodesic in an orientable complete
manifold of even dimension and positive sectional curvature is homotopic to a curve of shorter
length. (This provides a slight variant on the proof of this part of Synge’s Theorem.)

Solution. Let M be an orientable complete manifold of even dimension and let γ be a unit-
speed geodesic in M with γ(0) = γ(a) = x for some a > 0, γ′(0) = γ′(a). (Thus γ at time t
comes back to where it started with the same tangent vector.) Let ϕ : TxM → TxM be the
result of parallel transport along γ for 0 ≤ t ≤ a. Then ϕ is an orthogonal endomorphism of
TxM (since parallel transport preserves length) and sends γ′(0) to itself. Since M is orientable,
det ϕ = +1. Apply Lemma 3.8 in Chapter 9 of Do Carmo to the orthogonal complement of
γ′(0), and we see that ϕ fixes some unit vector v ⊥ γ′(0). Apply parallel transport of v along
γ to get a parallel unit-speed vector field V along γ. Then apply the second variation formula
to see that the second derivative of the energy for the variation of gamma defined by V is
negative. This means the length of γ can be shortened by a small homotopy. �
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4. Show by example that the volume comparison of the Bishop-Gromov Theorem only works
one way (to show vol Br(p) ≤ vol Br in the presence of a lower Ricci bound). You cannot
deduce vol Br(p) ≥ vol Br from an upper Ricci bound, or even an upper sectional curvature
bound. (Hint: the problem shows up even when M has constant curvature but is not simply
connected. Show that for fixed r, vol Br(p) can be arbitrarily small if you vary the manifold
M within the class of flat manifolds, those with constant curvature 0.)

Solution. Fix λ > 0 and let M = R
n/(λZ)n with the quotient metric from the flat metric on

R
n. Then M is a flat torus of volume λn. So for any p ∈ M and any r > 0, vol Br(p) ≤ λn.

Since λ can be arbitrarily small, this shows curvature information alone does not suffice to
give a lower bound for volumes of balls. �
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