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ABSTRACTWe characterize Frobenius algebras A as algebras having a comultiplication whichis a map of A-modules. This characterization allows a simple demonstration of thecompatibility of Frobenius algebra structure with direct sums. We then classifythe indecomposable Frobenius algebras as being either \annihilator algebras" |algebras whose socle is a principal ideal | or �eld extensions. The relationshipbetween two-dimensional topological quantum �eld theories and Frobenius algebrasis then formulated as an equivalence of categories. The proof hinges on our newcharacterization of Frobenius algebras.These results together provide a classi�cation of the indecomposable two-dimensionaltopological quantum �eld theories.Keywords: topological quantum �eld theory, frobenius algebra, two-dimensionalcobordism, category theory1. IntroductionTopological Quantum Field Theories (TQFT's) were �rst described axiomati-cally by Atiyah in [1]. Since then, much work has been done to understand thealgebraic structures arising in the three and four-dimensional cases (see [2] andthe references cited there.) In the two-dimensional case, the algebraic structureof lattice �eld theories are well discussed in [3], but the case of a two-dimensionaltheory not having distinguished zero-cells, or \corners," has not been completelyunderstood. Of course, these two theories are not the same; the most immediatelyapparent di�erence between the lattice and regular cases is the lack of commuta-tivity in the former. A classi�cation of the two-dimensional case in terms of thespectrum of a speci�c linear operator has been o�ered in [4], but actually dealswith a restricted case, as will be discussed below. Interest speci�cally in the twodimensional case goes back to such sources as Segal's presentation in [5] of two-dimensional conformal �eld theories and Witten's work in [6] relating the same toresults in higher dimensions.In [7] Voronov presents a \folk theorem" asserting that a two-dimensional TQFT\is equivalent to a Frobenius algebra" (FA), and sketches a proof. (See [8] for aphysicist's account.) Nevertheless, there has been di�culty formulating this the-orem precisely and �lling in the details of its proof [9, 10]. Indeed, the existing
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literature on the structure of FA's (see [11] and [12]) does not seem su�cient tosupport such a theorem. In particular, a precise de�nition of the coalgebra struc-ture of a FA, and an understanding of its relation to the multiplicative structure,has been lacking. In addition, no mention has been made of maps which preserveFA structure. These gaps are �lled below by section 2. That section also containsa small result on the uniqueness of a Frobenius algebra structure for a given alge-bra. Section 3 continues the discussion of the structure of FA's, and in particularclassi�es the indecomposable FA's.A second di�culty is the lack of a careful discussion of the category 2-Cobordof two-dimensional cobordisms. To eliminate this, section 4 provides a descriptionof 2-Cobord's two-category structure particularly convenient for our purposes, andthen details its structure as given by generators and relations.Section 5 clari�es the exact relationship between TQFT's and FA's by expressingit as an equivalence of monoidal categories. In other words, the correspondencerespects the direct sum and tensor product, and continues to hold on the level ofmorphisms. A succinct yet rigorous proof is given. In section 6, certain di�cultpoints regarding issues of orientation in 2-Cobord are discussed, and it is shownhow these lie at the foundation of the di�erence between the results here and in [4].Section 7 presents a variety of examples of FA's and their corresponding TQFT's.Many of the results discussed here were discovered independently by Sawin [13].However, in addition to results not appearing in [13], the approach here featuresa number of advantages: The discussion of comultiplication and its compatibilitywith direct sums of algebras allows for a clear de�nition of direct sums of FA's, andtherefore of direct sums of TQFT's. The relationship between comultiplication andmultiplication highlighted here makes the correspondence between 2-Cobord andFA's highly intuitive. The results about maps of FA's and natural transformationsof TQFT's allows the correspondence theorem to be expressed as an equivalence ofcategories. Finally, the lack of any condition about algebraic closure of the ground�eld K broadens the possibilities for the structures of FA's over K.2. Frobenius AlgebrasFix a �eld K. No assumption is made about K; it may be �nite or in�nitedimensional, algebraically-closed or not. All algebras A=K are assumed to be �nitedimensional and commutative, and to contain a unit 1A. Multiplication in A willbe denoted by � : A 
 A ! A, and � : A ! End(A) will denote the map takinga 2 A to \multiplication by a." The dual algebra A� has an A-module structureA
A� ! A� given by a
 � 7! a � � := � � �(a).Proposition 1. The following conditions on A are equivalent:(i) There exists an A-module isomorphism � : A �= A�.(ii) There exists a linear form f : A ! K whose kernel contains no non-trivialideals.(iii) There exists a nondegenerate linear form � : A
A! K which is associative,i.e. �(ab
 c) = �(a
 bc).(iv) For all ideals I 2 A, ann(ann(I)) = I and (I : K) + (ann(I) : K) = (A : K).



Proof. A complete proof is given in [11, pages 414-418]. The proof of theequivalence of the �rst three conditions rests on the following: Given � : A �= A�satisfying condition (i), the linear form f = �(1A) satis�es condition (ii). Givenform f : A! K satisfying condition (ii), the linear form � = f �� satis�es condition(iii). Given � : A 
 A ! K, the linear form f = �(1A 
 ) satis�es condition (ii),and the linear map � = f � � satis�es condition (i). �An algebra A satisfying these conditions is called a Frobenius algebra. WhenA is a FA, the maps f; �; � which are guaranteed to exist by conditions (i), (ii),and (iii) will henceforth be presumed to satisfy the relationships mentioned above.When it is useful to emphasize the FA structure endowed by particular f; �; and �,the algebra will be denoted by (A; f).Proposition 2. If (A; f) is a FA, then all FA-structures on A are given by(A; u � f), where u 2 A may be any unit.Proof. If u 2 A is a unit, then for any a 2 A such that u � f(ax) = f(uax) = 0for all x 2 A, it must be that ua, and thus a, is 0. By proposition 1, u � f is a FAform.Assume (A; g) is another FA structure on A. Now g 2 A�, so we have g =�(u) = u � f for some u 2 A. Since g is a FA form, the map �0 := g � � is anisomorphism A �= A�, as in the proof of proposition 1. Thus, there is a v 2 A suchthat f = �0(v) = v � g = vu � f . But �(1) = f = vu � f = �(vu) implies that 1 = vu,since � is an isomorphism, so u is a unit. �Proposition 3. If A is a FA, then so is A�Proof. If (A; f) is a FA then by proposition 1 all elements of A� are of theform a � f := f � �(a) for some a 2 A. The isomorphism A �= A� allows us to de�nemultiplication in A� by (a �f)(b �f) := ab �f . De�ne � : A� ! K to be \evaluation at1A". Then the identity �(f � �(ax)) = f(ax) and proposition 1 shows that (A�; �)is a FA. �The isomorphism of a FA A with its dual A� endows A with a coalgebra struc-ture. De�ne comultiplication � : A! A
A to be the map (��1 
 ��1) � �� � �:A A
AA� A� 
A�
-�?� -�� 6��1
��1It is clear from the de�nition of � that A is coassociative and cocommutative.Note also that � can be used to de�ne the multiplication in A� since (a � f)(b � f) =[a � f 
 b � f ] � � = ab � f: Let g : K ! A denote the unit map 1K 7! 1A, and letI : A! A denote the identity map. The commutativity ofA� f � �(a)A K a f(a) = f � �(a)(1A)HHHHHHHjg� HHHHHj6� -f 6 -



guarantees the commutativity ofA� A� 
A� K 
A�A A
A K 
A:-�� -g�
I� ?��16� -� 6�
� -f
ISince the top row is nothing other than I�, we see that the bottom row is I .Thus f is the counit in A.For the next result, view A and A
A as A-modules via the usual module actions� : A
A! A and � 
 I : A
A
A! A
A respectively.Theorem 1. A �nite dimensional commutative algebra A with multiplication� : A 
 A ! A and unit g : K ! A is a FA if and only if it has a cocommutativecomultiplication � : A! A
A, with a counit, which is a map of A-modules.Proof. Assume A is a FA with the comultiplication � as de�ned above. Asdiscussed, � is coassociative, cocommutative, and has a counit. To show � is anA-module map, we must con�rm commutativity ofA
A AA
A
A A
A:-�?I
� ?�-�
IChoose a basis e1; : : : ; en, and corresponding tensor representations �kij and fifor �; f respectively. Viewing � as a map A! A
A�, the commutativity ofA A
A� ei �kijek 
 e�jA� �mikfme�k �kij�mklfme�l 
 e�jA� 
A� �kjl�mikfme�l 
 e�j
-�?� ?�
I�

-? ?QQQQQQs�� QQQQQsfollows from the commutativity and associativity of � and the fact that � is theadjoint of f � �. By the de�nition of � it is immediately evident that the diagramA A� A AA
A A� 
A� A
A� A
A A
A�-�?� -��1?�� ?� ?� QQQQQs����1
��1 ��
I� �I
��1



commutes. Thus, commutativity of the diagram in question follows from the com-mutativity of the outer edge of the following diagram:A
A AA
 A
A� A
A
A A
A A
A�A
A� A
A�
�������I
� ?I
� -� ?� HHHHHHj�-I
I
��1HHHHHHj�
I� -�
I ?I
� �������I
I��I
��1-I
I�Since the outer edge is nothing other than an expression of the associativity of �,it certainly commutes.Now assume A has a comultiplication � satisfying the hypotheses, and let f :A! K be the counit. To show that A is actually a FA, it su�ces to show that thelinear form � := f � � : A
A! K satis�es the conditions required by proposition1. Associativity of � immediately follows from the associativity of �. It remains toshow non-degeneracy.De�ne  := ��g : K ! A
A. By assumption, the following diagram commutes:A
A
AK 
A A
A A
A A
KA HHHHjI
�-g
I ����*�
IHHHHj� -I
f����*�

By de�nition of g and f , composition along the lower edge of this diagram givesthe identity. Thus, the top line shows that (I 
 �) � ( 
 I) is the identity map onA. Choosing a basis e1; : : : ; en for A, this composition maps an arbitrary a 2 A asfollows: a 7! (Xj uj 
 ej)
 a 7!Xj uj�(ej 
 a) = awhere the uj are some elements in A. In fact, these uj form a basis for A, sincethey clearly span A, and there are at most dim(A) of them. Taking a = ui, we seethat ui =Pj uj�(ej
ui), so �(ej
ui) = �ij . Assume that for some k1; : : : ; kn 2 Awe have �(Pj kjej 
 x) = 0 for all x. Plugging in x = ui, we see that ki = 0 for alli. In other words, � is non-degenerate, and A is a FA. �A FA map � : (A; f)! (A0; f 0) is a map of algebras which preserves the actionof f , i.e. f 0 � � = f .Proposition 4. All FA maps � are injective. In addition, � is also a map ofcoalgebras if and only if it is an isomorphism.Proof. Injectivity of � follows from the commutativity of



A A�A0 A0�:-�?� -�0 6��This diagram commutes because��(f 0 � �0(�(a))) = f 0 � �0(�(a)) � � = f 0 � � � �(a) = f � �(a):It also follows from this that �� is surjective. Because�(g0 � �) = g0 � �(1A) = g0(1A0) = � 0(g0);the map �� preserves the action of � 0. If � is comultiplicative, then �� is multi-plicative, hence an FA map, and hence both injective and surjective. If � is anisomorphism, then �� must be multiplicative, and thus � is comultiplicative. �Let Frob/K be the category of FA's (A; f) and FA-isomorphisms. (The pur-pose of restriction to isomorphisms will become clear later.) Each FA (A; f) has adistinguished element ! = !(A) := � � �(1A).Proposition 5. The distinguished element ! of (A; f) is Pnj ej��1(e�j ), wheree1; : : : ; en is a basis for A. If u 2 A is a unit, then u�1! is the distinguished elementof (A; u � f).Proof. It is easily veri�ed that for each i; j, we have �(ei 
 ��1(e�j )) = �i;j .Since � is an isomorphism, by proposition 1, we see that ��1(e�1); : : : ; ��1(e�n) isthe dual basis of e1; : : : ; en relative to �. Note also that (��1(e�j ))� = �(ej). It nowfollows that �(1) = (��1 
 ��1) � �� � �(1)= (��1 
 ��1) � �= (��1 
 ��1) �Pj(e�j 
 �(ej))= Pj(��1(e�j )
 ej);and the �rst claim follows.View A� as a module over itself, using the multiplication �� : A� 
 A� ! A�de�ned above. We may also view A� 
 A� as an A�-module, using �� 
 I�. Itfollows from theorem 1 that we have the equality �� � �� = (�� 
 I�) � (I� 
 ��),and thus �� is an A� module map. Now, HomA�(A�; A� 
 A�) �= A� 
 A�, andthere is a �xed element � 2 A� 
 A� such that �� is \multiplication by �" [14, p.203]. Clearly, � = ��(1 � f) = �, and we therefore have��(c � f) = (c � f 
 �) � (�
 I)= Pj((c � f)
 e�j 
 �(ej)) � (�
 I)= Pj(c��1(e�j ) � f 
 �(ej)):Thus �(c) =Pj c��1(e�j )
 ej .



Now let �u and �u denote the appropriate maps of (A; u � f). We have�u(1A) = (��1u 
 ��1u ) � ��(u � f)= (��1u 
 ��1u )Pj(u��1(e�j ) � f 
 �(ej)):= Pj(��1(e�j )
 u�1ej):Thus the distinguished element of (A; u � f) is � � �u(1A) = Pj ��1(e�j )u�1ej =u�1!: �3. Monoidal Structure and Decomposition of FA'sA direct sum of FA's is a direct sum of algebras, each of which is a FA.Proposition 6. Comultiplication in A respects the direct sum structure.Proof. Let A = A0�A00. By de�nition of direct sum for algebras, multiplicationin A is a mapA
A �= (A0 
A0)� (A0 
A00)� (A00 
A0)� (A00 
A00)�! A0 � 0� 0�A00 �= A0 �A00 = AThus the comultiplication map � as de�ned above will satisfy this diagram:A0 �A00 (A0 �A00)
 (A0 �A00)
A0� �A00� (A0� �A00�)
 (A0� �A00�)

(A0� 
A0�)� (A00� 
A00�) (A0� 
A0�)� 0� 0� (A00� 
A00�):
?�

-�

?��
6��1
��1

-�=
6�

The result easily follows. �It follows from this that the distinguished element !(A) of a direct sum A =A0 � A00 is the direct sum !(A0) � !(A00). The FA structure itself of A is also, upto a unit, determined by the FA structures of the direct summands of A.Proposition 7. If A =Li Ai then (A; f) 2 Frob/K for some f if and only if foreach i there is an fi such that (Ai; fi) 2 Frob/K . Furthermore, if (A; f); (Ai; fi) 2Frob/K for all i then f and ffig determine each other up to module-action by aunit of A.Proof. If A 2 Frob/K then for each i de�ne fi := f jAi . Assume that for somei there is an element ai 2 Ai such that fi(aix) = 0 for all x 2 A. Now, we may view



ai as (0; : : : ; 0; ai; 0; : : : ; 0) 2 A. Thus f(aiA) = f(aiAi) = fi(aiAi) = 0. It followsthat ai = 0 and therefore (Ai; fi) is a FA for each i.Conversely, if (Ai; fi) 2 Frob/K for all i, then de�ne the form f := Li fi byf(x1; : : : ; xn) :=Pi fi(xi). Let e1; : : : ; en denote the canonical basis for A relativeto the given decomposition of A. Assume that there is an element b = (b1; : : : ; bn) 2A such that f(bx) = 0 for all x 2 A. Then for all i, fi(biAi) = f(bAiei) = 0, showingthat all bi; and hence b, are 0. Therefore, (A; f) is a FA.If (A; f); (Ai; fi) 2 Frob/K for all i, then by proposition 2 any FA form f :A ! K must satisfy f = u � (Li fi) for some unit u 2 A. Conversely, for each ithere is a unit ui 2 Ai such that fi = ui � (f jAi): But u := u1 � : : : � un is a unitin A, and fi = (u � f) jAi for each i. �FA's which are indecomposable under direct sum possess easily described struc-tures, as we will now show. Let N = N (A) denote the nilradical of A.Proposition 8. If A is indecomposable then N consists of all non-units of A.Proof. This follows from a series of results in [11, pp. 370{372] and the com-mutativity of A. �Since N is an ideal, it is a subspace of A. (Note that N 6= A, since A has anidentity element.) We may therefore choose a basis for A such that all basis elementsnot in N are units. Let U be the (non-trivial) subspace generated by the unit basiselements. Note that any non-unit in U lies in N as well, so the only non-unit in Uis 0. It follows that (N : K) + (U : K) = (A : K). Assume now that A is a FA.Since N is an ideal, proposition 1 shows that (N : K) + (ann(N ) : K) = (A : K),and thus (ann(N ) : K) = (U : K) 6= 0. Let S denote the ideal ann(N ). This is thesocle of A.Proposition 9. S is a principal ideal, any of whose elements is a generator.Proof. Choose a basis of units u1; : : : ; un for U , and let a be any non-zeroelement of S. Assume that Pni=1 si(aui) = 0 for some s1; : : : ; sn 2 K not all zero.Now u =Pni=1 siui is a unit, so we have a = 0u�1 = 0, a contradiction. Thus theelements au1; : : : ; aun of S are linearly independent. Since (S : K) = (U : K), wesee that S = aU = aA. �If A is indecomposable and N (A) = 0, then A contains only units and 0, sois just a �eld extension of K. If N (A) 6= 0, we will refer to A as an \annihilatoralgebra."Proposition 10. If algebra A is a �eld, any nonzero f 2 A� is a FA form. If Ais an annihilator algebra, any f 2 A� such that f(a) 6= 0, where a is a generator ofS, is a FA form.Proof. Assume A is a �eld and that f(x) 6= 0. Given any b 2 A, we havef(b(b�1x)) 6= 0. Now assume A is an annihilator algebra with S = aA, and thatf(a) 6= 0. As mentioned in [13], the fact that A is �nite dimensional guarantees thateach element in A divides a. Given any b 2 A, let b0 2 A be an element such thatbb0 = a. Then f(bb0) 6= 0. Both cases of the proposition now follow from proposition1. �Combining the discussion above with propositions 2 and 7, we have proven:Theorem 2. Every FA A decomposes into a direct sum of �elds and indecom-posable annihilator algebras, and the FA form of A is determined, up to a unit, byits indecomposable constituents.



In addition to a direct sum operation, the category Frob/K also has a tensorproduct.Proposition 11. If (A; f); (A0; f 0) 2 Frob/K, then (A
A0; f 
f 0) 2 Frob/Kalso.A detailed proof is given in [12, pp. 203-204]. The direct sum and the tensorproduct each endow Frob/K with a monoidal structure. In other words, we haveassociative bifunctors Frob/K � Frob/K ! Frob/K with identity K for thetensor product and identity 0 (i.e. the zero-dimensional algebra) for the direct sum.Note that we appeal here, and in the sequel without explicit mention, to Mac Lane'scoherence theorem [15, Chapter 7] in order to assure associativity. Intuitively, thistheorem allows us to work with natural equivalence in a monoid as if it were identity.4. The Category of Two-Dimensional CobordismsLet Pre2-Cobord denote the two-category de�ned as follows:� Objects are disjoint unions of labelled, oriented, compact one manifolds.Speci�cally, de�ne Bk : [0; 2�) ! C by Bk(t) := 3k + cos t + i sin t. Foreach k, orient the image of Bk in accordance with the parametrization, andlabel the image with the index k. The objects are taken to be the emptymanifold 0 and the disjoint unions n := Snk=1 Bk([0; 2�)) for all n 2 N �f0g.� Morphisms � :n ! m are oriented topological surfaces (not necessarily con-nected) equipped with an orientation preserving homeomorphism from theboundary @� to the disjoint union n� [ m. Here, n� indicates reversalof orientation. In other words, the orientation induced by � on the por-tion of @� corresponding to n is the opposite of the orientation that portioninherits from n. Each boundary component is given the labelling inducedby its homeomorphic image. Composition of morphisms consists of gluingcorrespondingly-labelled boundaries in an orientation-preserving manner.� Two-morphisms are orientation-preserving homeomorphisms T : � ! �0 ofmorphisms such that the following diagram commutes:@� n [m�
@�0

-�=?T j@� �������=Note that T j@� must preserve labelling.The two-morphisms of Pre2-Cobord form a topological space X . With theexception of those path components of X consisting of T : � ! �0, where � :0 !0 is of genus zero (the sphere) or genus one (the torus), the path components ofX are contractible [16]. The group �0(X) is the direct sum of the mapping classgroups of the morphisms of Pre2-Cobord . For a discussion of the mapping classgroup, see [17].



Σg ΣfΣβ Σα

ΣIFigure 1: The generators of 2-Cobord. Incompatibly-oriented boundaries are shown to the leftof each component, compatibly-oriented boundaries are shown to the right.De�ne 2-Cobord to be the category whose objects are those of Pre2-Cobord,but whose morphisms are the equivalence classes of morphisms induced by thetwo-category structure of Pre2-Cobord. In other words, two morphisms �;�0are equivalent in 2-Cobord if there is a two-morphism T : � ! �0 in Pre2-Cobord. Because boundary-preserving homeomorphisms of surfaces are homotopyequivalences, the morphisms of 2-Cobord are distinguished only up to homotopyclass.Note that 2-Cobord is in fact the \topological skeleton" of the category origi-nally studied in [5].2-Cobord also has a monoidal structure induced by disjoint union. Whenreferring to the monoidal structure, disjoint union will be termed \tensor product."The equivalence relation induced by the two-morphisms guarantees well-de�nednessand hence associativity of this tensor product.Proposition 12. The morphisms in 2-Cobord are generated by gluing copiesof the �ve basic surfaces shown in �gure 1, subject to the �ve sets of relations shownin �gure 2.Proof. According to the classi�cation theorem for two-dimensional surfaceswith boundary, each connected morphism � 2 2-Cobord is determined up to ho-motopy class by a triple (m; g; n), where g is genus,m is the number of incompatibly-oriented boundaries, and n is the number of compatibly-oriented boundaries. Thus,each such � with m; g; n > 0 may be decomposed as shown in �gure 3. If this �has m = 0 (n = 0) then the left (right) portion of the shown decomposition willbe replaced with �g (�f ). If g = 0 then the central portion will be deleted. It isclear that the �ve basic shapes of �gure 1 generate all �, whether connected or not,via composition and tensor product. Completeness of the relations follows easily byinspection. �5. TQFT's and FA'sLet Vect/K denote the category consisting of �nite dimensional vector spacesover K and linear maps, with the monoid structure given by tensor products. Atopological quantum �eld theory is a monoidal functor Z:2-Cobord! Vect/Ktaking 0 7! K and n 7! V 
n. As in [1], the functor Z is normalized so that Z(�I):= idZ(1).Proposition 13. Each TQFT Z induces a FA structure on Z(1).
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(F)(U)Figure 2: The relations of 2-Cobord. Within each relation, correspondingly oriented boundariesare labelled consistently from top to bottom.
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Figure 3: Decomposition of a generic morphism.



ΣH
ΣωFigure 4: The surfaces corresponding to \the handle operator" and \the distinguished element."Note: The following proof uses the functoriality of Z repeatedly, although noexplicit reference will be made.Proof. Denote Z(1) by V . The relations (C), (A) and (U) from proposition12 guarantee that the operators � := Z(��) and g := Z(�g) de�ne a commutativealgebra structure, with identity, on V . These same relations guarantee that theoperators � := Z(��) and f := Z(�f ) de�ne a cocommutative coalgebra structure,with counit, on V . Relation (F) implies that we have commutativity of the diagramV 
 V VV 
 V 
 V V 
 V:-�?I
� ?�-�
IIt follows from theorem 1 that Z induces a FA structure on V . �Any TQFT Z sends the morphism �H = �� ��� depicted in �gure 4 to a mapH := � � � : A ! A called a \handle operator." Here, we use A to denote Z(1).That this H is in fact a module homomorphism follows from the commutativity ofA
A A
A
A A
AA A
 a A:-�
I?� -�
I?I
� ?�-� -�Commutativity of the left hand square follows from theorem 1. The right handsquare simply expresses associativity of �. Thus, H = �(a) for some a 2 A [14,ibid.]. Since H(1A) = � � �(1A) = !, it follows that H = �(!). Note that Z sendsthe morphism �! shown in �gure 4 to ! 2 A. Gluing the surface �H to a boundarycorresponds to the addition of a loop in a Feynman diagram, and therefore thedistinguished element corresponds to Planck's constant ~.A map � : Z ! Z 0 of TQFT's is a monoidal natural transformation. Explicitly,� consists of a collection of linear maps �n := �
n1 : A
n ! A0
n, where �1 :A! A0; A
0 := K, �0 :=idK , and A;A0 are Z(1), Z 0(1) respectively, such that thefollowing diagram commutes for all n and any � : n!m 2 2-Cobord:



A
n A0
nA
m A
m
-�n?Z(�) ?Z0(�)-�mNote that � satis�es all three of the following commutative diagrams:A A0 A A0 A
A A0 
A0K A
A A0 
A0 A A0-�1QQQQQsf 0 ?f -�1?� ?�0 -�2?� ?�0-�2 -�1It follows from proposition 4 that �1 is a FA isomorphism.Let TQFT/K be the category whose objects are TQFT's and whose morphismsare the maps � de�ned above. We now describe two senses in which � is monoidal.Given Z;Z 0 2 TQFT/K, de�ne the tensor product Z 
 Z 0 by (Z 
 Z 0)(n) :=Z(n)
 Z 0(n). This is well de�ned, since we have the isomorphismnz }| {(A
A0)
 � � � 
 (A
A0) = ( nz }| {A
 � � � 
A)
 ( nz }| {A0 
 � � � 
A0):This in turn shows that for morphisms � 2 TQFT/K, it is consistent to de�ne(Z 
Z 0)(�) = Z(�)
Z 0(�). For example, (Z 
Z 0)(��) is de�ned by the compo-sition (A
A0)
 (A
A0) (A
A)
 (A0 
A0) A
A0:-�= -�
�0Note that (Z 
 Z 0)(�f ) = f 
 f 0, where f = Z(�f ) and f 0 = Z 0(�f ). It is clearfrom proposition 11 that Z 
 Z 0 2 TQFT/K.Given Z;Z 0 2 TQFT/K, it is also possible to de�ne the direct sum Z � Z 0 by(Z � Z 0)(n) := Z(n) � Z 0(n). It is not obvious that this is well de�ned since, ingeneral, (A � A0) 
 (A � A0) is not isomorphic to (A 
 A) � (A0 
 A0). However,proposition 12 shows that it su�ces to insure that the images under Z � Z 0 of the�ve basic morphisms satisfy the relations induced by the relations of 2-Cobord.To this end, de�ne the images of the �ve basic morphisms to act \componentwise."For example, if � = Z(��), we have� ((a� b)
 (c� d)) = �(a
 c)� �(b
 d):In other words, � gives Z(1) the structure of a direct sum of algebras. Consis-tency with the desired relations follows from propositions 6 and 7 and the followingtheorem:Theorem 3. The functor F:TQFT/K! Frob/K which maps objects by Z 7!(Z(1); Z(�f )) and morphisms by � 7! �1 is an equivalence of categories whichrespects tensor products and direct sums.



Note: Proposition 13 and the remarks preceding this theorem show that F iswell de�ned.Proof. It is necessary to construct a TQFT for an arbitrary (A; f) in Frob/K .De�ne Z 2 TQFT/K by n �= Sni=11 7! A
n and�� 7! � �� 7! � �I 7! I�f 7! f �g 7! gSince �; �; f; the unit g; and I already satisfy the conditions of (co)associativity,(co)commutatitivity, (co)unit and identity, we need only check that the relation inA corresponding to relation (F) of proposition 12 holds. In other words, we mustcon�rm commutativity of A
A AA
A
A A
A:-�?I
� ?�-�
IHowever, this has already been shown in theorem 1.Given a morphism � of Frob/K, there is a unique morphism � of TQFT/Khaving �1 = �. Thus, we have successfully constructed, up to isomorphism, aninverse G for F.Obviously, if TQFT Z is a tensor product Z 0 
 Z 00 then F(Z) = (Z 0(1) 
Z 00(1); Z 0(�f ) 
 Z 00(�f )) is a tensor product in Frob/K. To show the converse,assume that Z(1) = (A0 
 A00; f 0 
 f 00) 2 Frob/K. Denote by Z 0; Z 00 the functorsG(A0; f 0), G(A00; f 00) respectively. We have Z �= Z 0 
 Z 00.Similarly, if TQFT Z is a direct sum, then F (Z) is clearly a direct sum as well.Because direct sums in Frob/K are direct sums of algebras, propositions 6 and7 show that if Z(1) is a direct sum, then Z can be written as a direct sum inTQFT/K. �The equivalence of the categories Frob/K and TQFT/K shows that theorem2 may be viewed as a decomposition theorem for TQFT's.6. Clari�cationDurhuus and Jonsson [4] classify two-dimensional TQFT's with K=C in terms ofthe spectrum of the \handle operator" Z(�H) mentioned above. The relationship ofthat classi�cation to the results in this paper bears clari�cation. The most obviousdi�erence is the choice in [4] of a particular base �eld. More subtle di�erences,however, arise from issues regarding orientation of morphisms and duals of algebras.If � is a morphism in 2-Cobord, let �� denote � with orientation reversed.Because the two-morphisms in 2-Cobord were de�ned using only orientation-preserving maps, there is no a priori reason to assume that Z(�) = Z(��), asis assumed in [4]. Of course, there is necessarily a relationship between Z(�) andZ(��), because any such � can be decomposed as �0 � (�
mI 
�� 
�
nI ) ��00 forsome �0;�00;m; n: See �gure 5 for an example of such a decomposition of �� . For agiven choice of FA (A; f) and corresponding TQFT Z = G(A; f), these relationships



Figure 5: An example of the \orientation relations."determine a unique isomorphism � : A �= A� | namely the adjoint of Z(�f � ��):This isomorphism determines the e�ect in Vect/K of the reversal of orientation in2-Cobord.In [1], Atiyah speci�cally leaves the possible axiom Z(��) = Z(�)�, where thelatter use of * indicates the vector space dual, as an open issue. It is importantto note that this axiom is assumed in [4]. The two assumptions made there yieldthe strong identity Z(�) = Z(�)�, which forces � and the \handle operator" tobe simultaneously diagonalizable. Durhuus and Jonsson use the phrase \unitarytopological �eld theory" to indicate these particular assumptions.7. ExamplesIn this section, connected morphisms of 2-Cobord will be denoted by triples(m; g; n) as in the proof of proposition 12.Example 1. Truncated polynomial algebras Pn := K[x]=(xn).Let w = xn�1. Take the standard basis for Pn, and let f = w�. Since every basiselement divides w, we see that w� is a FA form. In fact, Pn contains no idempotents,so is indecomposable, and is thus an annihilator algebra with S = wA. By the proofof proposition 5, comultiplication is determined by �(1) =Pk(xk 
 xn�1�k), and! = nxn�1. Since !2 = 0, the TQFT Z = G(Pn; w�) sends any morphism (m; g; n)with g > 1 to the 0-map.Example 2. Commutative cohomology ringsH� := H�(M ;K) of n-dimensionalconnected K-orientable manifolds.By Poincar�e duality, Hq �= Hn�q . By the universal coe�cient theorem, sincethe coe�cients are in a �eld, Hn�q is naturally isomorphic to the vector spacedual of Hn�q . It follows that for each q there is a non-degenerate bilinear pairing�0 : Hq
Hn�q ! K de�ned by u
v 7! [u[v; �M ], where [�; �] denotes the Kroneckerindex, and �M 2 Hn is the fundamental orientation class of M . De�ne a non-degenerate linear form � : H�
H� ! K by �(u[ v) := �0(u[ v) if j u j + j v j= n,and 0 otherwise. By proposition 1, H� is a FA with FA form ��, where � denotesthe generator of Hn. The grading of H� and the connectivity of M guarantee thatH� is indecomposable, and S = Hn is an annihilator ideal.Calculation of �(1), and hence !, is simpli�ed by the fact that we can choose



bases aq1; : : : ; aqmq for each Hq such that aqj [ an�qk = �jk�. In fact, �(1) =PqPmqj (aqj 
 an�qj ), and thus ! = (H� : K)�. Note that ! [ ! = 0 so that,as with Pn, G(H�;��) \kills" all genus greater than one.Note that even if H� is not commutative, as long as n is even the sub-algebraconsisting of the elements of even degree in H� is an annihilator FA. In addition, ifK is chosen to be Z=2Z, then M will not only be K-orientable for any M , but H�will automatically be commutative.It is also possible to work with the entirety of a non-commutative cohomologyring, even though this does not strictly determine a TQFT as de�ned here. Inorder to do so, specify the A-module action on A� by a 
 g 7! g � �L(a), where�L denotes multiplication on the left. To see what happens, take a basis elementa 2 H� of odd degree, and let b be the basis element such that ab = �. Then��1(a�) = �b, and ��1(b�) = a. Assuming a 6= b, these basis elements contribute�(a
 (�b) + b
 a) = �2� to the distinguished element !. Of course, elements ofeven degree will contribute copies of � with positive coe�cients. It follows that thedistinguished element of this special FA structure is the Euler class, i.e. ��, where� is the Euler characteristic of M .The FA structure exhibited by a noncommutative H� corresponds nicely toits structure as a super-algebra, i.e. a vector space V = V 0 � V 1 with a Z=2Z-graded multiplication. A linear mapping of super-algebras is called even (odd) ifit maps an element of degree i to an element of degree i (i + 1); this distinctiongives End(V ) a super-algebra structure. Super-algebras have an even endomor-phism � : V ! V which is the identity on V 0 and multiplication by �1 on V 1. Notethat even (odd) endomorphisms commute (anti-commute) with �. The super-traceTrs:End(V ) ! K, corresponding to the usual linear algebra trace Tr of endomor-phisms, is de�ned by Trs(g) := Tr(� � g). Trs vanishes on odd endomorphisms, andon even endomorphisms gives the di�erence of the traces on V 0 and V 1.In the case of cohomology, take V 0 (V 1) to be the space of elements of even(odd) degree in H�. Clearly, the identity map I : H� ! H� is even, and we haveTrs(I) = �. This is consistent with the fact that f(!) = �, and corresponds to theequality Tr(I)= (A : K) = f(!) for (A; f) with the usual FA structure.The next example is similar to cohomology; it includes the case of a truncatedpolynomial algebra.Example 3. Finite dimensional (graded) commutative connected Hopf alge-bras.Margolis [18] shows that if A is such an algebra then it is a Poincar�e algebra,i.e. there is an isomorphism Aq �= An�q , where n = (A : K). It follows that A isan annihilator algebra with socle generated by the highest degree element.This same argument applies to the K-theory of a compact spin-manifold, whichis also a Poincar�e algebra. As in cohomology, the distinguished element is the Eulerclass, but in this case need not be self-annihilating; the associated TQFT wouldtherefore be able to detect genus greater than one.As an application of the results in section 3, we o�er the following:Example 4. Finite dimensional local rings (gradient algebras) Q(h0) :=C10 (Rn )=(h0), where h : (Rn ; 0) ! (Rn ; 0) is a smooth map, h0 is the germ ofh at 0, (h0) is the ideal generated by the components of h0, and C10 (Rn ) denotes



the ring of germs at 0 of smooth functions Rn ! Rn .Let J be the Jacobian of h, and let J0 be the residue class of J in Q(h0). It isshown in [19] that any linear functional f : Q(h0)! R such that f(J0) > 0 is a FAform. In fact, Q(h0) is local, and hence an annihilator algebra. It follows from thediscussion in section 3 that Q(h0) has annihilator ideal S = J0Q(h0).A similar structure is exhibited by topological Landau-Ginzburg models in physics[20]. This is the study of the ring of states C [xi ]=@W , where xi denote chiral su-per�elds, and W (xi) is a quasi-homogenous superpotential.The next example is perhaps the best known example of FA's, and is a richsource of TQFT's:Example 5. Group algebras K[H ], where H is a �nite abelian group.These are actually just ungraded Hopf algebras.Let f = 1�H . Since each basis element has an inverse, f is clearly a FA form.Moreover, because the basis elements form a group, we have �(1H ) =Ph2H h
h�1,and thus ! =j H j 1H . The associated TQFT Z := G(K[H ]; 1�H) sends a morphism(m; g; n) to the map j H jg Z(m; 0; n).If f is adjusted by a unit, then more interesting things can happen. For instance,if h0 2 H is an element of order d, then the FA form j H j�1 h0 � f yields thecomultiplication given by �h0(1H) =j H j�1 Ph2H hh0�1
h�1, and ! = h0�1. Theassociated TQFT will now send a morphism (m; g; n) to the map Z(m; g mod d; n);in other words, it will only distinguish genus \mod d."Group algebras can be used, at least in some cases, to distinguish morphismsof 2-Cobord both in terms of genus and number of components. Assume K hascharacteristic 0 and that Z=2Z is given as a multiplicative group by the elementse0; e1, satisfying fe0e1 = e1; e20 = e0 = e21g. De�ne (A; f) := (K[e0; e1]; e�1). Let� := (0; g; 1)
 (0; h; 1) and �0 := (0; g + h; 2). The following table shows the valueof G(A; f) when evaluated on � and �0, for various classes of genus.� �0g; h both odd: 2g+he1 
 e1 2g+h(e1 
 e0 + e0 
 e1)g; h both even: 2g+he0 
 e0 \ "g even, h odd: 2g+he0 
 e1 2g+h(e0 
 e0 + e1 
 e1)Example 6. The character ring R(H) of representations of �nite or compactgroups H , tensored with Q.Let V0; : : : ; Vn denote the irreducible representations of H , and let �0; : : : ; �nrespectively denote their characters. Assume �0 is the trivial character. The bilinearform � de�ned by < �i; �j >:=dim HomH(Vi; Vj) = �ij is non-degenerate. Itis associative because dim HomH(Vi; Vj) equals the dimension of the space of H-invariant bilinear forms, i.e. dim(V �i 
 V �j )H ; associativity follows from the (non-canonical) isomorphism Vi �= V �j and the associativity of the tensor product. Wesee that � de�nes a FA structure having FA form ��0. Since each basis element ofR(H) is self-dual relative to �, we have ! = Pni=1 �2i . For h 2 H let c(h) denotethe number of members of the conjugacy class of h in H . The virtual character !then has the following well known de�nition [21, p. 20]:!(h) = � j H j =c(h) if h and h�1 are conjugates0 otherwise.



It follows that if every element ofH is conjugate to its inverse, which is equivalentto saying that all representations are real and also that ! is invertible, then R(H)must be a direct sum (as algebras) of �eld extensions.Example 7. Fusion algebras and quantum cohomology rings.Fusion algebras are the representation rings of loop groups. See [22] for details.The (non-commutative) FA structure of quantum cohomology, and its applications,are discussed in [23, chapter 8]. The examples of representations and cohomologyare actually most naturally de�ned over Z, so we ask:� What e�ects does the additional structure of a \Frobenius ring" have on itsassociated \TQFT's"?Example 8. Algebraic number �eld extensions L=K.The usual trace TrL=K is in fact a FA form, since TrL=K(1) = (L : K). In thiscase, � is the \trace form" sending (a; b) 7!TrL=K(ab). The discriminant of L=Kis the discriminant of this �, which is just det(TrL=K(eiej)), where feig is a basisfor L=K. The study of trace forms goes hand-in-hand with the study of the Wittring W (K). See [24] for a discussion of these matters. It is clear that the de�nitionof discriminant generalizes to all FA's, and from [24] we see that the Witt ringcorresponds to a certain quotient of Frob/K .� What information can the generalized discriminant and Witt ring give aboutFA's and their associated TQFT's?AcknowledgementsThe author thanks J. Morava for introducing him to the study of topological�eld theory, and for his continuous guidance and support of this work. Thanks arealso due to A. Abrams, J. M. Boardman, H. Sadofsky, S. Sawin and S. Zucker forhelpful discussions.References[1] Michael Atiyah, Topological quantum �eld theories, IHES Publ. Math. 68 (1988)175{186.[2] Louis Crane and David Yetter, On algebraic structures implicit in topological quantum�eld theories, Preprint HEP-TH-9412025 (December 1994).[3] M. Fukuma, S. Hosono, and H. Kawai, Lattice topological �eld theory in two dimen-sions, Comm. Math. Phys. 161 (1994) 157{175.[4] Berg�nnur Durhuus and Thordur Jonsson, Classi�cation and construction of unitarytopological �eld theories in two dimensions, J. Math. Phys. 35(10) (1994) 5306{5313.[5] Graeme Segal, Two dimensional conformal �eld theories and modular functors, InIXth International Congress on Mathematical Physics (1988) 22{37.[6] Edward Witten, Some geometrical applications of quantum �eld theory, In IXthInternational Congress on Mathematical Physics (1988) 77{116.
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