Fibonacci's "Rabbit Problem"

In original Latin:

Quot paria coniculorum in uno anno ex uno pario germinentur.

     Qvidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circundatus, ut sciret, quot ex eo paria germinarentur in uno anno: cum natura eorum sit per singulum mensem aliud par germinare; et in secundo mense ab eorum natiuitate germinant. Quia suprascriptum par in primo mense germinat, duplicabis ipsum, erunt paria duo in uno mense. Ex quibus unum, silicet primum, in secundo mense | geminat; et sic sunt in secundo mense paria 3; ex quibus in uno mense duo pregnantur; et geminantur in tercio mense paria 2 coniculorum; et sic sunt paria 5 in ipso mense; ex quibus in ipso pregnantur paria 3; et sunt in quarto mense paria 8; ex quibus paria 5 geminant alia paria 5: quibus additis cum pariis 8, faciunt paria 13 in quinto mense; ex quibus paria 5, que geminata fuerunt in ipso mense, non concipiunt in ipso mense, sed alia 8 paria pregnantur; et sic sunt in sexto mense paria 21; cum quibus additis parijs 13, que geminantur in septimo, erunt in ipso paria 34, cum quibus additis parijs 21, que geminantur in octauo mense, erunt in ipso paria 55; cum quibus additis parijs 34, que geminantur in nono mense, erunt in ipso paria 89; cum quibus additis rursum parijs 55, que geminantur in decimo, erunt in ipso paria 144; cum quibus additis rursum parijs 89, que geminantur in undecimo mense, erunt in ipso paria 233. Cum quibus etiam additis parijs 144, que geminantur in ultimo mense, erunt paria 377, et tot paria peperit suprascriptum par in pr[a]efato loco in capite unius anni. Potes enim uidere in hac margine, *qualiter

 hoc operati fuimus, scilicet quod iunximus primum numerum cum secundo, uidelicet 1 cum 2; et secundum cum tercio; et tercium cum quarto; et quartum cum quinto, et sic deinceps, donec iunximus decimum cum undecimo, uidelicet 144 cum 233; et habuimus suprascriptorum cuniculorum summam, uidelicet 377; et sic posses facere per ordinem de infinitis numeris mensibus

Description: http://www2.truman.edu/%7Erharriso/images/FibonacciD6.gif

 

Rough English translation:

"How many pairs of rabbits will there be a year from now?" Assumptions:

1. You begin with one male rabbit and one female rabbit. These rabbits have just been born.
2. A rabbit will reach sexual maturity after one month.
3. The gestation period of a rabbit is one month.
4. Once it has reached sexual maturity, a female rabbit will give birth every month.
5. A female rabbit will always give birth to one male rabbit and one female rabbit.
6. Rabbits never die.