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ABSTRACT. We survey the status of the problem of determining which dif
ferentiable manifolds (without boundary) have Riemannian metrics of posi
tive scalar curvature. Of course, if the manifold is non-compact, one requires 
the metric to be complete. 
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1. THE YAMABE PROBLEM AND THE TRICHOTOMY THEOREM 

The study of manifolds of positive scalar curvature can be traced back 
to work related to the Yamabe problem, which in turn is one way of 
generalizing to higher dimensions the classical uniformization theorem 
for compact surfaces. For completeness, we give a formulation of the latter, 
but stated as a result in Riemannian geometry rather than as a result about 
Riemann surfaces. Hereafter, we will use the adjective "closed" for mani
folds to mean "compact and without boundary," and to mean "connected" 
as well unless we state otherwise. The term "manifold" in this paper will 
always mean a Coo manifold. 
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Uniformization theorem. Let (M, g) be a closed Riemannian 2-manifold. 
Then there is a function u e C°°(M) such that (M, eug) has constant 
Gaussian curvature. In other words, there is a metric in the same confor
mal class with constant curvature.

There is also a uniqueness statement about u, but it’s not relevant for our 
purposes. However, we note that by the Gauss-Bonnet Theorem, applied 
either to M or (if M is non-orientable) to its oriented double cover, the 
sign of the Gaussian curvature of the conformal metric eug is an invariant 
of the diffeomorphism class of M.

Instead of starting with a fixed metric g on M, we can begin instead 
with a fixed differentiable surface and ask what nice Riemannian metrics 
can be put on it. Reformulating the above then gives:

Corollary. Each diffeomorphism class of closed surfaces belongs to one 
and only one of the following classes:

(a) spherical surfaces-those with a Riemannian metric of constant curva
ture 1;

(b) flat surfaces-those with a Riemannian metric of vanishing curvature;
(c) hyperbolic surfaces-those with a Riemannian metric of constant cur

vature —1.

The classification of closed surfaces gives us a complete list of the sur
faces in each class. Class (a) consists of S2 and RP2, class (b) consists 
of T2 and the Klein bottle, and class (c) contains a countable infinity of 
diffeomorphism types. Note also that classes (b) and (c) may be grouped 
together into the class of aspherical surfaces, those for which the univer
sal cover is contractible. The aspherical surfaces are exactly those which 
do not admit a metric with positive Gaussian curvature.

It would of course be nice to have a generalization of the uniformization 
theorem to higher dimensions. But in dimensions > 2, there are several 
different competing notions of curvature (e.g., the Riemann curvature op
erator, sectional curvature, Ricci curvature, and scalar curvature). A little 
thought shows that there’s no hope to replace the Gaussian curvature in the 
statement of the uniformization theorem by the sectional curvature, or even 
by the Ricci curvature, in dimensions > 2. However, Yamabe conjectured, 
and thought that he had proved, that the statement of the uniformization 
theorem still holds for closed manifolds of all dimensions if one replaces the 
Gaussian curvature by the scalar curvature. The scalar curvature is the 
weakest (local) curvature of a Riemannian manifold; it is the contraction 
of the Ricci curvature tensor. In dimension 2, it is twice the Gaussian cur
vature; in general, it measures the leading term in the difference between 
the volume of a small geodesic ball in the manifold and the volume of a 
ball of the same radius in a Euclidean space of the same dimension. While 
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Yamabe’s original proof turned out to be wrong, attempts to rectify the 
proof came to be known as the Yamabe problem, and eventually led to 
a correct (but quite difficult) proof of the conjecture, due largely to work 
of T. Aubin and R. Schoen [Schn]. For surveys of much of the literature, 
see [Au, Chapter 6] and [Kaz].

The work on the Yamabe problem suggested asking more generally which 
functions K 6 C°°(M) can be the scalar curvature of some metric on a given 
manifold M, and also showed that the sign of k can be of crucial importance. 
A remarkable theorem of Kazdan and Warner extends the trichotomy of 
the corollary above to arbitrary dimensions.

Trichotomy theorem [KW1], [KW2]. Let Mn be a closed differentiable 
manifold of dimension n. Then M belongs to exactly one of the following 
three classes:

(a) manifolds admitting at least one Riemannian metric for which the 
scalar curvature n is non-negative but not identically zero (in this 
case, there exists a metric with n > 0);

(b) manifolds not admitting a Riemannian metric with « > 0, but admit
ting a metric with « = 0 (in this case, such a metric is Ricci-flat);

(c) manifolds not admitting a Riemannian metric with K > 0, but admit
ting a metric with « < 0.

In fact, if n > 3, then the set of functions in C^M) which can be the 
scalar curvature of some metric is exactly all of C^^M) in case (a), all n 
which are either identically 0 or else negative somewhere in case (b), and 
all K which are negative somewhere in case (c).

This theorem of course suggests an important problem: that of clas
sifying the manifolds in these three classes, or more precisely, of giving 
necessary and sufficient conditions for a given manifold M to lie in the 
various classes. At the moment, examples are known in each dimension of 
manifolds in each of the classes, but there are no good conjectures about 
how to describe class (b) (or in other words, how to describe those Ricci-flat 
manifolds that cannot be given metrics of positive scalar curvature). Aside 
from Bieberbach manifolds, which admit flat metrics and are known not 
to admit positive scalar curvature, the main examples known in this class 
are Calabi-Yau manifolds, i.e., complex Kahler manifolds with ci = 0, for 
example, a smooth complex hypersurface of degree n + 1 in CPn. Such a 
hypersurface has vanishing w2, and when n is odd, it has non-vanishing 
A-genus [Br], and so, as will be pointed out below, cannot belong to class 
(a). Since it has a Calabi-Yau metric, it belongs to class (b). For mani
folds known not to be in class (a), V. Mathai [M] has shown how one can 
sometimes also prove that the manifold is not is class (b). For instance, if 
W2(Mn) = 0 and |A(M)| > 2n/2, then M must be in class (c). Most of the 
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rest of this survey will be devoted to the problem of describing the mani
folds in class (a). For simplicity, we call these simply manifolds of positive 
scalar curvature.

2. Obstructions for Closed Manifolds to 
Admit Metrics of Positive Scalar Curvature

(A) Dirac Operator Methods

The single most important tool for showing that certain manifolds do not 
have metrics of positive scalar curvature is based on the Dirac operator. A 
good basic reference about this operator and its properties is [LMJ. There 
are by now many variants of the “Dirac operator technique,” several of 
which will be used in §§5, 6, and 7 below, but the key observation all of 
these depend on is a Weitzenbock-type formula discovered by Lichnerowicz 
[Li]. In its simplest form, the identity says that that if D is the Dirac 
operator on a Riemannian spin manifold with scalar curvature /£, then 
D2 = V*V 4- ^, where V is the covariant derivative operator on sections 
of the spinor bundle, and V* is its adjoint with respect to the Hilbert 
space structure induced by the Riemannian metric. Thus when K is strictly 
positive, so is D2, and the spectrum of D is bounded away from zero.

This fact has a number of immediate consequences. The simplest, noted 
by Lichnerowicz [Li], is that if M2k is a closed spin manifold of even di
mension, then the index of D, viewed as an operator from sections of the 
positive half-spinor bundle S+ to sections of the negative half-spinor bun
dle S", must vanish. (Since D is self-adjoint as an operator on sections of 
S+ ® S~, (D|s+)* is the same as D\g-1 and neither D|s+ nor its adjoint 
can have non-zero kernel.) On the other hand, this index can be computed 
by the Atiyah-Singer index theorem to be A(M), the A-genus. So if the 
dimension of M is divisible by 4 and A(M) ^ 0, the assumption that M 
has a metric of positive scalar curvature leads to a contradiction.

This observation was generalized by Hitchin [Hi], who noted that the 
canonical KO-orient at ion of spin manifolds can be interpreted in terms of 
a more general index theory for the Dirac operator. In fact, there is a map 
of spectra [ABP1], which by slight abuse of notation we will call

D : MSpin —► bo,

such that the induced map D^ = a : Q®pm —* bon takes the bordism class 
of a closed spin manifold Mn to the generalized index (with values in bon) 
of the Dirac operator D on M. Here it does not matter much whether 
one uses connective or periodic K-theory, since there is a natural map of 
spectra p : bo —* KO which is an isomorphism on nn, n > 0. As before, 
the index vanishes if the spectrum of D is bounded away from zero, so we 
obtain:
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Theorem 2.1 (Lichnerowicz-Hitchin). If Mn is a closed spin manifold 
with a metric of positive scalar curvature then a(M) = 0 (ifn is divisible 
by 4, this just means A(M) = 0/

While this is as much as one can get out of the Dirac operator in the case 
of closed simply-connected manifolds, there are various ways of adapting 
this argument to non-simply-connected manifolds or to complete manifolds. 
We deal here with the former; the latter require other kinds of index theory 
and will be treated in §7 below.

When M is not simply connected, any metric on M can be lifted in a 
locally isometric way to any covering of M, so any obstruction to positive 
scalar curvature on a covering gives an obstruction to positive scalar curva
ture on M itself. More profoundly, however, the presence of a fundamental 
group implies that M admits flat (or possibly ‘almost flat’ [CGM]) bundles 
E coming from representations, either finite- or infinite-dimensional, of the 
fundamental group tt. Putting a connection on E makes it possible to de
fine the ‘Dirac operator De with coefficients in E, and if the connection on 
E is actually flat, one again obtains the identity (DE)2 = ^^e^ ^ If E 
is not flat, there is a correction term coming from the curvature of E, but if 
this curvature is sufliciently small compared with «, the conclusion that the 
spectrum of De is bounded away from 0 still holds. Gromov and Lawson 
[GL1] considered the case where Eis an ordinary complex vector bundle 
which is not flat, but such that one can make its curvature sufficiently small 
(by replacing the original M by a suitable large cover). Then the Atiyah- 
Singer theorem gives as before that (A(Af)-ch(E), [Af]) = 0, where A is the 
total A-class, if M is a spin manifold with positive scalar curvature. Con
sequences include the impossibility of positive scalar curvature on certain 
aspherical or ‘enlargeable’ manifolds.

Another version of the same idea was introduced by the first author in 
[Rl], [R2], [R3], and [R4]. In this case, E is taken to be literally flat, but 
in general is not an ordinary vector bundle (as flat ordinary vector bundles 
tend to be topologically trivial or at least to have vanishing characteristic 
classes). Instead, one works with bundles whose fibres are finitely gener
ated projective modules over a C*-algebra, in this case C^tf) or C^ r(%), 
where tt is the fundamental group of Af or a suitable group that ^(Af) 
maps to. These are C*-completions of the real group ring IRtt. A suitable 
index theory for elliptic operators with coefficients in such bundles was 
introduced by Miscenko and Fomenko, along with an appropriate general
ization of the Atiyah-Singer Theorem. In the finest version of the theory, 
torsion invariants are taken into account and we recapture all possible gen
eralizations of Hitchin’s theorem (2.1) coming from flat bundles. For the 
most elegant formulation of the theory, we make use of a natural ‘assembly 
map’ A: KO^(Bir) —* KO*(C£(7r)), essentially introduced by Kasparov [K] 
following earlier ideas of Miscenko. For a homotopy-theoretic description of 
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this map, following ideas of Loday [Lo], see [R4, Theorem 2.2]. The result 
(in the case where M admits a spin structure) is the following:

Theorem 2.2 ([R3]). If is a group, Mn is a closed spin manifold and 
f:M Bit is a continuous map, let a(M) = A{p{D^[M, /]))), where 
[M,f] is the bordism class of M ^ Bir in Q^pin^^). Then if M admits a 
metric of positive scalar curvature, a(M) = 0 in KOn(C^:)).

The element a(M), in the case where we take f : M —> Bn^M) to be 
the classifying map for the universal cover of M, represents the total ob
struction to positive scalar curvature coming from the Miscenko-Fomenko 
index theory of the Dirac operator. When tti(M) is finite, its real group 
C*-algebra is a finite-dimensional semi-simple algebra over R, and a(M) 
can also be interpreted as the total obstruction to positive scalar curvature 
coming from the analogue of Theorem 2.1 for Dirac operators on flat real 
vector bundles. Of course, Theorem 2.2 only has value when the assembly 
map A can be computed. The strong Novikov conjecture for ?r, which is 
plausible for ?r torsion-free, is that .4 is an isomorphism, or at least an injec
tion. This is known to be true for many torsion-free groups of geometrical 
interest—see [K] and [R3]. The strong Novikov conjecture implies that the 
obstruction class a(M) can be replaced by D^M, /]) 6 KOn(Bir). Even 
weaker statements would imply that no aspherical closed manifold admits 
a metric of positive scalar curvature(see [Rl]). When ?r is finite, A is far 
from being an isomorphism but is still often non-trivial (assuming ?r is of 
even order); it is computed explicitly in [R4].

A few other authors have given various adaptations of the Dirac operator 
technique, using other kinds of index theory. The results tend to be similar 
in spirit to those of [GL1] but valid under somewhat different, often much 
weaker, hypotheses. Without going into details, we cite as references the 
papers [GL3], [Mo], [CM], [CGM].

(b) Minimal Surface Methods

The relevance of minimal surface theory to the positive scalar curvature 
problem comes from a clever observation of Schoen and Yau ([SY1] and 
[SY2]). Suppose Mn is a closed manifold of positive scalar curvature k 
and H^1 is an oriented hypersurface which minimizes area (i.e., (n — 1)- 
dimensional volume) in its homology class. Let £ be the scalar curvature 
of H. Then the Gauss curvature equation (which relates the curvatures of 
M and H), together with the fact that the second variation of area must 
be non-negative, implies the inequality

([SY2, (1.6)]) [
JH* Jh
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for all functions ^ G C°°(H) not vanishing identically. This is not enough 
to deduce that k must be positive, but it does imply (if n > 3) that one can 
make a conformal change in the metric on H (multiplying the metric by a 
power of the first eigenfunction of the modified Laplacian A—
H positive scalar curvature. If n = 3, things are even easier: taking 0 = 1 
in the inequality above gives that the integral of the Gaussian curvature of 
H is positive, so that JT is a sphere by Gauss-Bonnet. Thus if one knows 
for some reason that H cannot have positive scalar curvature, we obtain an 
obstruction to positive scalar curvature on M. Various consequences (not 
the best possible with these methods) are obtained in [SY1], [SY2], and in 
[GL3, §§8-12].

Minimal surface methods have a number of advantages and disadvan
tages over Dirac operator methods for constructing obstructions to positive 
scalar curvature. One clear advantage is that no spin structure is needed, 
so that W2 never appears in the argument. Thus Gromov and Lawson [GL3, 
p. 186] were able to show that CP2#T4 does not admit a metric of posi
tive scalar curvature, in spite of the fact that none of its covers admit spin 
structures. Whether one could get the same result using suitable Dirac 
operators with coefficients on the universal cover (these do exist, in fact 
with coefficients in line bundles, since CP2 is a spinc manifold) is still an 
open question.

On the negative side, to make use of the basic minimal surface technique, 
one needs to be able to find an area-minimizing oriented hypersurface in a 
given homology class in M. While any homology class is represented by an 
area-minimizing integral current H, such a current can have singularities 
(of codimension > 7 in H). This is why the original Schoen-Yau paper was 
limited to the case n < 7; in this case H is automatically regular. Schoen 
and Yau have since announced [Yau] that they have a way of getting around 
this technical difficulty so as to extend the minimal surface technique to 
high dimensions. Intuitively, this sounds as if it shoudn’t be so hard since 
the codimension of the singularities is big (cf. Theorem 3.1 below), but the 
details are presumably messy, and we haven’t seen them.

3. The Surgery Theorem and Its Consequences

After discussing the obstructions to the existence of metrics of positive 
scalar curvature in the last section we now turn to the construction of such 
metrics. Of course, there are plenty of examples of Riemannian manifolds 
with positive scalar curvature: e.g. spheres, projective spaces (real, complex 
or quaternionic), or, more generally, quotients of compact semisimple Lie 
groups. Moreover, there are certain bundle constructions producing mani
folds with metrics of positive scalar curvature (cf. §4). In fact, Lawson and 
Yau [LY] showed that any closed manifold M that admits an effective ac
tion of SU(2) or 50(3) can be given positive scalar curvature, and this was 
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generalized by Lewkowicz [Le], who showed it is enough for M to locally 
admit actions of non-abelian Lie groups (of positive dimension), assuming 
these actions are “compatible” on the overlaps. Still, the manifolds con
structed this way give a ‘small’ subset of the set of diffeomorphism classes 
of manifolds. The subset of diffeomorphism classes known to carry metrics 
of positive scalar curvature grew enormously when the following surgery 
theorem was proved independently by Gromov-Lawson and Schoen-Yau.

Let TV be a manifold of dimension n and assume that there is an em
bedding of Sk x Dn~k in N. Let M be the manifold obtained by glueing 
the complement of Sk x Dn~k c TV (Dn~k is the open (n — kj-disk) and 
D^1 x Sn~k~1 along their common boundary Sk x Sn~k~1. We say that 
M is obtained from TV by k-surgery (or surgery of codimension n — k).

Surgery Theorem 3.1 (Gromov-Lawson [GL2] and Schoen-Yau 
[SY2]). Let N be a closed manifold with positive scalar curvature met
ric, not necessarily connected, and let M be obtained from N by surgery 
of codimension > 3. Then M has a positive scalar curvature metric.

Note that the connected sum Mi #M2 of two n-dimensional manifolds 
is obtained from the disjoint union of Mi and M2 by a 0-surgery. Hence a 
special case of (3.1) is:

Corollary 3.2. Let Mi and M2 be closed manifolds of dimension n > 3 
with a metric of positive scalar curvature. Then the connected sum Mi #M2 
admits a metric of positive scalar curvature.

To apply the surgery theorem it is important to know when a closed 
manifold M can be obtained from another manifold TV by a sequence of 
surgeries of codimension > 3. It follows from Morse theory that M can 
be obtained by surgeries from TV (with no condition on the codimension) if 
and only if M is bordant to TV; i.e. if there is a compact manifold W whose 
boundary is the disjoint union of M and N [Mi2, Thm. 3.13]. It turns out 
that if we want to control the codimension of the surgeries involved we have 
to work with more sophisticated bordisms: Let B ^ BO be a fibration. A 
B-manifold is a smooth manifold M, embedded in some Euclidean space, 
together with a lift P: M B of the map v:M -+ BO classifying the nor
mal bundle of M. We denote by Qn(B) the bordism group of n-dimensional 
manifolds with B-structure (cf. [Sw, §12] or [S, Chapter II]) and by Pos^B) 
the subgroup of Qn(B) represented by B-manifolds v:M B such that 
M admits a metric of positive scalar curvature.

Bordism theorem 3.3. Let v.M B be a B-manifold of dimension 
n> 5 such that v is a 2-equivalence (i.e. v induces an isomorphism on on 
Tro and ni and a surjection on 7r2). If (M, P) represents a class in Pos^B) 
then M admits a metric of positive scalar curvature.
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We want to point out that for a manifold M the map v:M —* BO can 
always be factored in the form M A B(M) ^ BO such that

(1) P is a 2-equivalence and
(2) p is a fibration with fibre F such that nn(F) = 0 for n > 2.

In fact, the fibration p is uniquely determined up to homotopy equivalence 
by these properties. It is called the normal l-type of M in [Kr].

Examples.
3.4. Assume that Af is an oriented manifold with fundamental group 

TT and W2(M) = 0. Then v can be factored in the form M ^ 
Btt x BSpin ^ BO, where i) = f x s, f is the classifying map of 
the universal covering of M, s is a spin structure on M (considered 
as lift of v through the projection q: BSpin —> BO) and p is the 
projection on the second factor composed with q.

3.5. Assume that Al is an oriented manifold with fundamental group ?r 
and W2(M) / 0, where M is the universal covering of M. Then 
p can be factored in the form M ^ Bir x BSO -^ BO, where 
v = f x s, f is the classifying map of the universal cover of M, s 
is the orientation of M (considered as lift of v through the projec
tion q: BSO —► BO) and p is the projection on the second factor 
composed with q.

3.6. Generalizing the example (3.4), assume that M is an oriented man
ifold with fundamental group ?r and W2(M) = 0. It follows that 
u^M) = f*(f3) for some cohomology class (3 e H2(Bir, Z/2). Fol
lowing [KwSc, §2] let Y(?r, (3) be the pullback of (3: Bn F(Z/2,2) 
and the second Stiefel-Whitney class W2: BSO ^ K(Z/2,2). Then 
v can be factored in the form M ^Y(n, (3) ^ BO, where p is the 
obvious map and u is a lift of / x s: M —> Bn x BSO.

3.7. Assume that M^is a non-orientable manifold with fundamental 
group tt and ^(M) ^ 0. Then w^(M) = /*(«) for some cohomol
ogy class a e H^Bn-, Z/2). Let Y^n, a) be the pullback of a: Bn —> 
K(Z/2,1) and the first Stiefel-Whitney class W1: BO —> K(Z/2,1). 
Then w can be factored in the form M ^Y(n,^) ^ BO, where p 
is the obvious map and v is a lift of f x v: M —> Bn x BO.

It is easy to check the properties (1) and (2) for these factorizations. The 
only point worth mentioning is that the condition u^M) / 0 guarantees 
that v. M BO induces a surjection on ^2. Similarly, the condition 
wi(M) / 0 is equivalent to u:M BO inducing a surjection on 7ri. We 
note that for B = Bn x BSpin (resp. B = Bn x BSO) the bordism group 
Qn(B) can be identified with the spin bordism group ^^^(Bn) (resp. with 
the oriented bordism group (ln(B7r)). Similarly, if ?r splits as ?r = n' x Z/2,
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TT' = kerwi, and B = Y^tv^) as in (3.7), then B = B^ x BO and the 
bordism group Qn(B) can be identified with the unoriented bordism group

Finally, if one considers manifolds with ?r = Z/2, with w^M) / 0 and 
with W2(M) = 0, then B = BPin in the case W2(M) = 0 (this is the case 
where M admits a Pin structure on the normal bundle and a Pin' structure 
on the tangent bundle, see [G]) and B = BPin in the case ^(M) / 0 (this 
is the case where W2(M) is pulled back from the unique non-zero class in 
H2(Bl/2\ Z/2), hence W2(M) = w^M)2 and M admits a Pin structure on 
the tangent bundle and a Pin' structure on the normal bundle, again see 
[G]). In the first of these cases, the bordism group dn(B) is Q^111 ; in the 
second case it is Q£m.

Theorem 3.3 generalizes the known results on the bordism invariance of 
positive scalar curvature [GL2, Thm. B, Thm. C], [R2, Thm. 2.2, Thm. 
2.13], [KwSc, Prop. 1.1 and p. 283]. The proof of theorem 3.3 is exactly 
along the lines of [R2, Thm. 2.2], which deals with the special case where 
Bis as in 3.4. The only point worth mentioning is the following: Given a 
bordism class in Posn(B) with n > 4 we can always find a representative 
i):M —> B such that M has a metric of positive scalar curvature and v is 
a 2-equivalence. The latter condition can always be achieved by first doing 
0-surgeries on M (to make ^(M) —► ^(B) an isomorphism and tti(M) —► 
^(B) surjective) and then doing 1-surgeries (to make tti(M) —► ^(B) an 
isomorphism and ^(M) —► 7r2(B) surjective). The surgery theorem 3.1 
garantees that the resulting manifold again has a metric of positive scalar 
curvature. In particular, in theorem 2.2 of [R2] which says that the positive 
scalar curvature metric on a spin manifold %2 can be propagated to a spin 
manifold Xi, if they represent the same class in a suitable bordism group, 
the assumption on the fundamental group of X2 is superfluous.

Remark 3.8. It is still an open question whether the bordism theorem (3.3) 
holds for 4-dimensional manifolds. The present proof doesn’t generalize to 
4-dimensional manifolds due to the same reasons that the proof of the s- 
cobordism theorem fails for an s-cobordism with 4-dimensional boundary. 
Donaldson proved that the s-cobordism theorem is in fact false in this 
dimension and hence one might speculate that gauge theory methods could 
show that the bordism theorem is false in dimension 4, i.e. that there are 
possibly new obstructions to positive scalar curvature metrics from gauge 
theory in dimension 4.

The question whether the bordism theorem holds in dimension 4 can 
be reformulated as follows: Let (M, v) be a B-manifold as in the bordism 
theorem; i.e. P is a 2-equivalence and (M, £) is B-bordant to another B- 
manifold (M',vr) which carries a metric of positive scalar curvature. By 
our discussion above we can assume that also v' is a 2-equivalence. This 
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implies by a result of Kreck [Kr] that M and Mf are stably diffeomorphic, 
i.e. for suitable positive integers s,t the connected sum M#s{S2 x S2) of 
M with s copies of S2 x S2 is diffeomorphic to M^t^S2 x S2). By corollary 
3.2 the latter manifold carries a metric of positive scalar curvature so that 
the question whether M carries a metric of positive scalar curvature boils 
down to the following problem:

Problem 3.9. Suppose that M is a closed 4-manifold such that M#(S2 x 
S2) carries a metric of positive scalar curvature. Does M admit a metric 
of positive scalar curvature?

Now we turn to the consequences of the bordism theorem. The the
orem and the subsequent discussion show that the question whether an 
n-manifold M has a positive scalar curvature metric can be studied by 
determining the subgroup Posn(B(My) of Qn(B(M)). If M is simply con
nected and non-spin then B(M) = BSO and hence Qn(B(M)) is just Q^0, 
the bordism group of oriented n-manifolds. This bordism group has been 
computed by Wall [Wa]. Moreover, one knows explicit generators for 0$°, 
which admit positive scalar curvature metrics. Hence Posn(B(My) is equal 
to Qn(B(M)) in this case and the bordism theorem implies:

Corollary 3.10 [GL2, Cor. C]. Every closed simply-connected n-manifold, 
n>5, which is not spin, carries a metric of positive scalar curvature.

As discussed in the previous section, a necessary condition for the ex
istence of a positive scalar curvature metric on a spin manifold M is the 
vanishing of the index obstruction a(M) e KOn.

Gromov-Lawson Conjecture (simply-connected case). A closed 
simply-connected spin manifold M of dimension n > 5 carries a metric 
of positive scalar curvature if and only if a(M) = 0.

This conjecture was proved recently by the second author using tech
niques from stable homotopy theory. We present an outline of the proof 
in the next section. Previously, Gromov-Lawson had proved that the con
jecture is true ‘rationally’; i.e. if Al is a l-connected spin manifold with 
a(M) = 0 then there is a A: such that the connected sum of k copies of 
M carries a metric of positive scalar curvature [GL2, Cor. B]. This was 
improved by Miyazaki who showed that one can choose k = 4 [Miy2]. 
Moreover, Rosenberg proved that the conjecture is true for n < 23 [R3, 
Thm. 1.1].

The proofs of these partial results - as well as the proof of the conjecture 
- of course use the bordism theorem. We note that if M is simply connected 
and spin then B(M) = BSpin and hence fln(B(M)) is the spin bordism 
group d®pm. Thus to prove the conjecture, it suffices to find spin manifolds 
with positive scalar curvature metrics whose bordism classes generate the 
kernel of a: Q®pm —> KOn. The spin bordism groups have been computed 
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by Anderson, Brown and Peterson [ABP1], but in contrast to the oriented 
bordism groups one does not know explicit spin manifolds which are gener
ators of Q®pm for general n. Gromov-Lawson (resp. Miyazaki resp. Rosen
berg) found spin manifolds with positive scalar curvature metrics whose 
bordism classes generate ker a 0 Q (resp. a subgroup of ker a containing 
4ker a resp. ker a for n < 23), which implies the results mentioned above.

Remark 3.11. Prior to Anderson-Brown-Peterson [ABP1] the spin bordism 
groups Q®pin were determined for n < 23, but it was an open question 
whether there is a 24-dimensional spin manifold M such that the Stiefel- 
Whitney number W41U6W^ is non-trivial [Mil]. Anderson-Brown-Peterson 
gave a positive answer to that question, but their homotopy theoretic meth
ods do not give an explicit construction of such a manifold M. Later such 
a construction was found [Man], but to find explicit representatives for all 
generators of the spin bordism ring seems a very difficult problem.

4. Proof of the Gromov-Lawson Conjecture 
in the Simply Connected Case

In this section we describe the main ideas from the proof of the Gromov- 
Lawson conjecture [Stl], [St2]. As shown in the last section it suffices to 
show that the kernel of a: Q®pm —* KOn is equal to the subgroup Posn 
consisting of bordism classes represented by spin manifolds with positive 
scalar curvature metrics (in section 2 we saw that Posn is contained in 
ker a). We construct elements in Posn using the following remark.

Observation 4.1. Let F be a compact Riemannian manifold of positive 
scalar curvature on which the group G acts by isometries. Let B be a 
compact manifold and let ^.E-^Bbea fibre bundle with fibre F and 
structure group G. Then E has a metric of positive scalar curvature.

This follows easily from the O’Neill formulas for scalar curvature (e.g. 
[Be, 9.70d]) using a certain metric on E with totally geodesic fibres [Be, 
9.59] and then shrinking the fibres.

Remark 4-2. Let E —^ B be a fibre bundle over a compact manifold B 
whose fibre is a compact manifold F. It is not true that a positive scalar 
curvature metric on F or B implies that E has such a metric. The following 
is a counter example: Let S9 be the exotic homotopy sphere of dimension 
9 with «(S9) ^ 0. Then the connected sum S7 x S2#^9 has non-trivial 
a-invariant and hence does not admit a metric of positive scalar curvature. 
On the other hand Hitchin showed that S7 x S2#E9 is the total space of a 
fibre bundle over S2 with fibre S7 [Hi, p. 45].

The observation (4.1) is well known to the experts; in fact, this argument 
is used in [GL2], [Miy2] and [R3] to show that manifolds they construct to 
prove partial results towards the Gromov-Lawson conjecture admit positive
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scalar curvature metrics. The new idea to overcome the difficulty mentioned 
in remark 3.11 is to consider simultaneously all manifolds which are total 
spaces of fibre bundles with a fixed manifold F as fibre. A good choice for F 
is the quaternionic projective plane HP2, since its bordism class generates 
the kernel of a in dimension 8, which is the first dimension in which ker a 
is non-trivial. The standard riemannian metric on HP2 has positive scalar 
curvature and the projective symplectic group G = PSp^ acts on HP2 
by isometries. The isotropy subgroups of this action are the conjugates of 
H = P(Sp(2) x Sp(l)) C G. Given a manifold N and a map f:N —> BG 
let N N be the pull back of the fibre bundle

(4.3) HIP2 = G/H -^BH BG.

via f. The bundle TV —► TV satisfies the assumptions of (4.1) and hence TV 
has a positive scalar curvature metric. Moreover, if TV is spin then TV is 
again a spin manifold. We can hence define a homomorphism

(1^(56) Q7

by mapping the bordism class of /: TV BG to the bordism class of TV. 
The image of $ is contained in Posn by (4.1).

Theorem 4.4. Let [M] be a bordism class in the kernel of a: Q®pm —> 
KOn(pt). Then there is an odd number r such that r[M] is in the image 
of*.

It is possible to strengthen this result: one can always choose r = 1 
[KrSt]. This stronger result implies ker a = Posn and hence the Gromov- 
Lawson conjecture. Alternatively, the theorem above shows that r ker a C 
Posn for some odd integer r. In conjunction with Miyazaki’s result 4 ker a C 
Posn [Miy2] (cf. §3) this implies ker a = Posn.

Theorem 4.4 is proved by translating the statement into stable homo
topy theory via the Pontrjagin-Thom construction and then using Adams 
spectral sequence techniques. Recall that Q^pm is canonically isomorphic to 
7Tn(MSpin) where MSpin is the Thom spectrum associated to the projection 
map BSpin —► BO. More generally, for any space X the bordism group 
Q^pm(X) can be identified with Trn(MSpm AX+), where X+ is the union of 
X and a disjoint basepoint. In particular, Q^^BG) can be identified with 
TTn(MSpin A E8BG+). Using results of Boardman [Bo, Thm. 6.20] there is 
a map T: MSpin A Y^BG^ MSpin such that the induced map

T*:7Tn(MSpin A E8BG+) —► 7rn(MSpin) 

can be identified with ^ (up to sign).
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Recall from §2 that there is a map D: MSpin —► bo whose induced map 
on homotopy groups can be identified with a. It follows from [ABP1] that 
D* is surjective after localizing at 2 (i.e. after taking the tensor product 
of those homotopy groups with Z(2) = {f e Q : 6 is prime to 2}). In 
particular, if we denote by MSpin the fibre of D, the long exact homotopy 
sequence shows that ker a 0 Z(2) is isomorphic to Trn(MSpin) 0 Z(2).

Note that the composition DT induces the trivial map on homotopy 
groups, since the image of an element [TV, f] e ^^(BG) = 7rn(MSpin A 
T^BG^) under the map (DT)* can be interpreted as a(TV). But this 
is zero due to the Lichnerowicz-Hitchin theorem (2.1) since TV carries a 
positive scalar curvature metric. Applying the family index theorem to the 
fibre bundle (4.3) and using the Weitzenbock formula in each fibre, we can 
strengthen that result to show:

Proposition 4.5 [St2]. The composition DT is zero homotopic.

In particular, T-. MSpin A T^BG^ —► MSpin factors through a map 
T: MSpin A TFBG+ —^ MSpin. The following theorem is then a homotopy 
theoretic reformulation of theorem 4.4.

Theorem 4.6. The homomorphism T*:irn(MSpin A S8BG+) 0 Z(2) —► 
Tvn(MSpin) 0 Z(2) is surjective.

This result is proved using Adams spectral sequence techniques. Recall 
that the Z/p-homology H*X of a spectrum X is a comodule over the dual 
Steenrod algebra A*. If H*X is known as A*-comodule one can use the 
mod p Adams spectral sequence

Ext^(Z/p,ff,X) => ^(X) ® Z(p)

to obtain information about the homotopy groups of X [Sw, 19.9 and 19.12]. 
From now on let p = 2.

Proposition 4.7. The induced map T*: H*MSpin A T^BG^ —> H*MSpin 
is a split surjection of A*-comodules.

As a corollary we get that the induced map

f*: Ext^ (Z/2, If.MSpin A £8BG+) ^ Ext^‘ (Z/2, H.MSpm)

is a surjection of the ^-terms of the corresponding Adams spectral se
quences. Note that this does not imply that T induces a surjection of 
the ^oo-terms, since there could be non-trivial differentials in the domain 
spectral sequence. Fortunately this is not the case.
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Proposition 4.8. The mod 2 Adams spectral sequence of MSpin^^BG^ 
collapses.

Hence T induces a surjection of the Boo-terms which implies theorem 
4.6. To prove (4.8) we show that ff^MSpin A YFBG+ is isomorphic to an 
extended A(l)*-comodule AO^)*M, where A(1)* is the dual of A(1), the 
subalgebra of the Steenrod algebra generated by Sq1 and Sq2, and M is an 
A(l)*-comodule. Then

Ext^ (Z/2, H^MSpin A ^BG^ ^ Ext J)# (Z/2, M)

by [Sw, Prop. 20.16]. Moreover, M is a direct sum of A(l)*-comodules 
whose Ext-groups are known [AP, §3]. Let Y be the spectrum obtained 
from MSpin A ^BG^ by splitting off the Eilenberg-MacLane spectrum 
corresponding to the free summands of M [Mar]. Inspecting the E^-term of 
the mod 2 Adams spectral sequence of Y we conclude that all differentials 
are zero for dimensional reasons and due to the multiplicative structure. 
This implies proposition 4.8.

For the proof of proposition 4.7 we first show using results of D. Pengelley 
[Pe] that B*MSpin = A*^!)^, where TV is a certain A(l)*-comodule. 
Moreover, T* is induced by a map of A(l)*-comodules f:M —> N. A 
calculation shows that f is surjective and that f induces a surjection on 
the Qo-homology groups (Qo is the Bockstein which acts as a differential 
on A(l)*-comodules). It turns out that this suffices to conclude that / is a 
split surjection of A(l)*-comodules which implies proposition 4.7.

5. Status of the Problem for Closed Manifolds 
with Finite Fundamental Group

In this section we study the following question: Given a closed manifold 
M of dimension n with finite fundamental group ?r, when does M admit a 
metric of positive scalar curvature? Based on a few partial results described 
below Rosenberg made the following conjecture:

Conjecture 5.1. A closed manifold M of dimension n > 5 with finite 
fundamental group ir admits a metric of positive scalar curvature if and 
only if all (KO*-valued) index obstructions associated to Dirac operators 
with coefficients in flat bundles (on M and it covers) vanish.

If M is a spin manifold we’ve seen in §2 that the indices of all the 
Dirac operators with coefficients in flat bundles can be combined to a single 
element a(M) e KO^C^tt)). Thus the Conjecture says in this case that 
M has a positive scalar curvature metric if and only if a(M) vanishes. If, 
on the other hand, the universal cover M (and a fortiori M) does not 
admit a spin structure, then there are no Dirac operators with coefficients 
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in flat bundles defined on M or on any of its covers. Thus the Conjecture 
says in this case that M admits a metric of positive scalar curvature. Of 
course, it can happen that M admits a spin structure, but M doesn’t. In 
this case it would be nice to combine all the index obstructions into a single 
obstruction a(M) (as in the case where M is spin), but no such formulation 
of the conjecture is known yet (cf. [R4, §3]).

What is the evidence we have for the Conjecture? First of all, to prove 
the conjecture for a finite group ?r it sufiices to verify the conjecture for its 
Sylow subgroups, thanks to the following proposition which is an easy gen
eralization of a result of Kwasik and Schultz [KwSc, Prop. 1.5 and Corollary 
1.6]:

Proposition 5.2. Let M be a closed manifold of dimension n > 5 with 
finite fundamental group ?r and let Mp —+ M be the covering corresponding 
to the Sylow p-subgroup of tt. Then M admits a metric of positive scalar 
curvature if and only if Mp carries a metric of positive scalar curvature for 
all p.

The following theorem gives a list of groups for which the conjecture is 
true. It includes, as far as we know, all the finite p-groups, for which the 
conjecture has been verified so far.

Theorem 5.3. (A) Let M be an orientable manifold with finite funda
mental group tt. Then conjecture 5.1 is true in the following cases:

(1) W2(M) / 0 and tt is a cyclic group [R3, Thm. 2.14], [R4, Thm. 1.1].
(2) W2(M) / 0 and ?r is the quaternion group of order 8 [R4, Thm. 

1.5].
(3) W2(M) = 0 and ?r is an odd order cyclic group [R3, Thm. 1.3], 

[KwSc, Thm. 1.8].
(4) W2(M) = 0 and tt = Z/2.
(5) ^(M) ^ 0, W2(M) = 0 and ?r = Z/2r [Schu].

(B) Let M be a non-orientable manifold with finite fundamental group 
tt. Then conjecture 5.1 is true in the following cases:

(6) w2(M) ^0and7v = Z/2.
(7) w2(M) = 0 and tt = Z/2.

Parts (4), (6), and (7) are new results. The proof of (4) is based on 
the following result, which we expect to be also useful for the verification 
of the conjecture for spin manifolds whose fundamental groups are other 
finite 2-groups.
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Theorem 5.4 [St3, Thm. 1.1]. Let ^ be a finite 2-group and let M be a 
closed spin manifold of dimension n > 5 with fundamental group ?r such 
that its bordism class is in the kernel of

fl®pm(B7r) = nn(MSpin A Btt^) bon(B7r+) .

Then M admits a metric of positive scalar curvature.

Note that if ?r is the trivial group this theorem implies the Gromov- 
Lawson conjecture. Recall from §4 that the main homotopy theoretic result 
needed for the proof of the Gromov-Lawson conjecture is that a certain map 
T\ MSpin A S8BG+ —> MSpin induces a surjection on homotopy groups 
localized at 2. Theorem 5.4 is a corollary of the stronger result that T is in 
fact a split surjection of spectra.

Proof of theorem 5.3 (4)- Using the fact that the conjecture is true in 
the simply connected case it suffices to decide which bordism classes in 
Q®pm(BZ/2) by can be represented by positive scalar curvature manifolds. 
Let

a: Q^pin(2?X/2) — KOn(pt)

be the map which sends a bordism class [M, f] to a(M\ where M is the 
pull back of the double covering EZ/2 —> BZ/2 via f (M is the universal 
covering of M if f is 2-connected). If M has a metric of positive scalar 
curvature then then so does M and hence the bordism class [M, f] is in 
the kernel of a. We claim that the converse is true, too, which implies the 
conjecture in the case at hand.

We note that & factors in the form

nr(BZ/2) ^ bon(BZ/2) A KOn(pt) .

Hence theorem 5.4 shows that it is in fact enough to represent the ele
ments in the kernel of a by positive scalar curvature manifolds. The groups 
bon(BZ/2) have been computed by Mahowald [Mah, Lemma 7.3]:

{
Z/2 n = l,2 mod 8, 7i > 0
Z/22fc n = 4fc — 1, fc = 0 mod 2
Z/22H1 n = 4fc-l, fc = l mod2 
0 otherwise

For 71 = 1,2,3,7 mod 8, 71 > 0 let gn € bon(BZ/2) be the following ele-
ment:

' D.([SM)v4* n = 8k + l

9n = < /^([S1,;])^4* n = 8k + 2
D,([RP4k-1,j]) n = 4fc-l
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Here i is the obvious inclusion into BZ/2 = RP00 and we consider S1 (resp. 
RIP4*-1) as spin manifolds. There are exactly two choices of spin structures 
on these manifolds and we pick the one which is trivial in the sense that it 
extends to a spin structure on D2 (resp. the disk bundle of H&H, where H 
is the Hopf line bundle over CP°° and we identify RP4^-1 with the sphere 
bundle of H ® H). Furthermore, 77 € 6oi(S°) = Z/2 is the non-trivial 
element and v e bos(S°) is the periodicity element. We can multiply by 
these elements, since bo is a ring spectrum which makes bo*(X) a module 
over bo* (S°) for any X.

Claim. gn is a generator of bon(BZ/2).

We note that the image of an element D*([M, /]) € Q®pm(X) under the 
natural transformation h: bon(X) —► Hn(X; Z/2) is just /*(M), where 
[M] is the Z/2-fundamental class. In particular, h(gn) / 0 for n = 1 
and n = 4k-I. This shows that in these degrees gn is an element of 
Adams filtration zero and hence a generator. For n = 1,2 mod 8, n > 1 
the structure of bo*(BZ/2) as module over bo*(S°) implies that gn is a 
generator (the module structure can be read off from the multiplicative 
structure of the E2-term of the Adams spectral sequence converging to 
bo*(BZ/2)).

Claim. For n = 1,2 mod 8 we have a(gn) / 0.

Let S1 be the total space of the pull back of the double covering EZ/2 —> 
BZ/2 via i:81 —> BZ/2. It is an amusing exercise to show that the lift 
of the trivial spin structure on S1 is the non-trivial spin structure on S1. 
In particular, 6(^1) = ^[S1^]) = a(5x) is non-zero. We note that a is 
a 5o*-module map, since if we identify KOn(pt) with bon(S°) for n > 0 
then A is the map of do-homology groups induced by the Kahn-Priddy 
transfer [Bo, Thm. 6.20]. This shows that d(^Hi) = ^^^1) = vkg 
(resp. (1(^+2) = yk^^(ffi) = vk g2) and these elements are non-trivial in 
bo*(S°) by Bott periodicity.

This shows that the elements ^4^-1, which are represented by the positive 
scalar curvature manifolds RP4^"1 generate the kernel of d and hence proves 
the theorem. □

Proof of theorem 5.3 (6, 7). Case (6) of theorem 5.3 follows easily from 
the analysis in example 3.7 above. As we pointed out there, we only need 
to show that each class in the unoriented bordism group 5ln (n > 0) can 
be represented by a manifold of positive scalar curvature. As remarked in 
the proof of [R4, Theorem 1.2], this is possible since $1* is a polynomial 
algebra over the field F2 of two elements, with generators represented by 
even-dimensional real projective spaces and by hypersurfaces of degree (1, 
1) in products of pairs of real projective spaces.
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For case (7), we need to deal similarly with those generators of Q£ln 
and QPin for which certain obstructions vanish. The analysis is somewhat 
complicated and will be deferred in part to a future paper of the authors, 
but we can at least give a sketch. First, an analogue of Theorem 5.4 is used 
to show that one has positive scalar curvature on all generators of fiPm 
and Q£m except for those associated to summands in MPin and MPinf 
coming from bo. The relevant groups are then computed in [ABP2] and in 
[G]. In the case of Qfin -^ Q^^RF00), bo A RP°° contributes big cyclic 

7
summands in dimensions 2 (mod 4) and Z/2’s in dimensions 0,1 (mod 8). 
By [G, Corollary 3.5], the former are generated by RP4^2, and so carry 
positive scalar curvature. The Z/2 summands in dimensions 0,1 (mod 8) 
do not carry positive scalar curvature because of an index obstruction. For 
if Mn is the Pin manifold with spin double cover M representing one of these 
summands, 7(M) e fl^(RR00) is represented by V = (M x S^j^r x e)^ 
where r is the involution on M with quotient M, and where c is complex 
conjugation, a map of degree -1, on S1. If M were to have a metric of 
positive scalar curvature, we could lift it to M, take the product with the 
standard metric on S1, and get a metric of positive scalar curvature on 
Y. However, the Z/2 summands in QPin dimensions n = 0,1 (mod 8) map 
under 7 to the classes in fl^ (RP°°) for which the Z/2 index of the twisted 
Dirac operator is non-zero, so Y cannot admit positive scalar curvature.

In the Pin' case, the relevant summand in the bordism group has big 
cyclic summands in dimensions 0 (mod 4) and Z/2’s in dimensions 2,3 
(mod 8) [G, §2]. Again, by [G, Corollary 3.5], the former are generated 
by RP4^, and so carry positive scalar curvature. The Z/2 summands in 
dimensions 2,3 (mod 8) do not carry positive scalar curvature because of 
an index obstruction. In dimension 2 (mod 8) this is clear from the exact 
sequence of [G, Theorem 3.1], since the double cover M of a Pin' manifold 
M in the relevant class is a spin manifold with a(M) / 0. A different 
argument is needed in dimension 3 (mod 8), using the fact that the Z/2 
summand here maps non-trivially to bo?. □

It seems that the problems one encounters when trying to prove conjec
ture 5.1 for more groups are all related and come from the fact that there 
is no 1-dimensional manifold with positive scalar curvature. For example, 
the projection Zn —► (Z/q)n induces a map f from the n-dimensional torus 
Tn to B(Z/q)n.

Question 5.5. Can the bordism class [Tn,/] e ^^(B^Z/qy1) be repre
sented by a positive scalar curvature manifold?

If conjecture 5.1 is true the answer should be positive. On the other hand, 
if we replace Z/q by the infinite cyclic group Z the answer is negative, since 
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/ is a 2-equivalence in this case and hence by the bordism theorem 3.3 
a positive answer would imply that Tn admits a metric of positive scalar 
curvature which contradicts results of [GL1, Cor. B].

Let L be a complex line bundle over the Kummer surface K whose first 
Chern class is not divisible (K is a simply connected 4-dimensional spin 
manifold with A(K) = 2). Let M be the sphere bundle of L. Then M 
is a simply connected spin manifold with a free S^-action. It follows from 
5.3 (3,4) that M does have a metric of positive scalar curvature which is 
Z/g-equivariant if Q is odd or if g = 2. There is no S1 -equivariant metric of 
positive scalar curvature on M [BB, Theorem C], but the open question is: 

Question 5.6. Does M admit a Z/2r-equivariant metric of positive scalar 
curvature?

6. Status of the Problem for Closed Manifolds 
with Certain Infinite Fundamental Groups

While the positive scalar curvature problem does not in its original for
mulation depend on the size of the fundamental group, the problem tends 
to take on a different flavor when the fundamental group is “large” com
pared to the “size” of the manifold. For instance, in dimension 2, the closed 
manifolds admitting metrics of positive scalar curvature are exactly those 
with finite fundamental group. In dimension 3, the Thurston geometriza- 
tion conjecture (or more precisely, a special case of it, that any 3-manifold 
with finite fundamental group should admit a metric of constant positive 
sectional curvature) would imply that a closed orientable 3-manifold ad
mits a metric of positive scalar curvature if and only if it has no Kfa 1) 
summands in its prime decomposition ([SY1] and [GL3, Theorem 8.1]). 
Thus, from the point of view of 3-manifolds, finite groups and Z are not 
“large” fundamental groups, but the fundamental group of a 3-dimensional 
Kfa 1) manifold is. Also, the tools needed for studying the problem axe 
somewhat different in the “opposite” cases of finite and “large” fundamen
tal group. This was already noted by Gromov and Lawson in the differences 
of approach in their two original papers [GL1] and [GL2], though the C*- 
algebraic Dirac operator approach to the problem (Theorem 2.2) doesn’t 
depend on any assumption about the size of tti.

When the fundamental group of a closed manifold is infinite, its universal 
cover is non-compact, and one can try to use the methods of §7 below to 
find obstructions to existence of a complete metric of uniformly bounded 
positive scalar curvature on the universal cover. On the other hand, when 
the fundamental group is infinite, it may not have many finite-dimensional 
representations, so merely studying the Dirac operator on finite-dimensional 
flat vector bundles may not give much information. Furthermore, we know 
from the example of CP2#?4 quoted above in §2 that the analogue of 
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Conjecture 5.1 cannot hold in general, and it is not known exactly how 
the conjecture should be modified. (The example has a non-spin universal 
cover, but does not admit a metric of positive scalar curvature.)

The main conjecture with regard to “large” fundamental group is:

Conjecture 6.1 (Gromov-Lawson). No closed aspherical manifold M 
admits a metric of positive scalar curvature.

This is known in an enormous number of cases, basically for all aspher
ical manifolds with good geometrical properties. As we remarked in §2, 
it would follow from the strong Novikov conjecture (see [RI, §3B]), even 
without assuming that M has a spin structure, and hence, by results of 
Kasparov [K], when ^(M) is the fundamental group of a complete man
ifold of non-positive curvature or is a discrete subgroup of a connected 
Lie group. By more recent results of Kasparov and Skandalis [KaSk], the 
strong Novikov conjecture, and hence Conjecture 6.1, also holds if ^(M) 
can be embedded in GL(n) of a number field. The conjecture is proved 
with various other geometrical hypotheses in [GL3], [Mo], [CM], [CGM]. 
Sample sufficient conditions on M are enlargeability or A2-enlargeability 
[GL3]—the definitions of these are technical, but they are also satisfied in 
many of the cases treated by Kasparov—or that tvi(M) be a “hyperbolic” 
or “semi-hyperbolic” group in the combinatorial sense [CGM].

As for results on infinite fundamental groups not related to Conjecture 
6.1, the obstruction theorem (Theorem 2.2), the bordism theorem (Theorem 
3.3), and the Gromov-Lawson Conjecture (Theorem 4.4) make it possible to 
obtain fairly complete results about positive scalar curvature on manifolds 
for which the fundamental group is infinite but still “not too big,” for 
instance free abelian with rank smaller than the dimension. (The relevant 
property is that the homological dimension of the fundamental group is 
smaller than the dimension of the manifolds considered.) We give a number 
of sample results, without trying to give an exhaustive list of all theorems 
along these lines.

Theorem 6.2. Suppose Mn is a closed oriented n-manifold with funda
mental group tt and universal cover M, with n>5. Then:

(1) Ifw2(M) ^ 0 and ?r is a free group or Tv = TV±(Sg)f the fundamental 
group of a closed orientable surface S9 of genus g, or if tt is free 
abelian of rank k < n, then M admits a metric of positive scalar 
curvature.

(2) If u^fM) = 0 and s is a spin structure on M, and if tv is free or 
tt = 7Vi{Sg), or if TV is free abelian of any rank k, then M admits a 
metric of positive scalar curvature if and only if D*([M, s, /]) = 0 
in KOn(BTv). Here M X Btv is the classifying map for the universal 
cover M M of M.
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Proof. The free group case of (1) is in [Miyl, Theorem 5.9], the free abelian 
case of (1) is in [Miyl, Theorem 5.6], and the “only if” part of (2), as well 
as the “if” part with n < 23, are in [R3, Theorems 3.5, 3.6, and 3.8]. For 
the rest of (2), note that the proofs of [R3, Theorems 3.5, 3.6, and 3.8] 
go through for all n > 5 once one has the Gromov-Lawson Conjecture in 
the simply connected case. Furthermore we observe that the rank restric
tion n > A: in [R3, Thm. 3.6] is superfluous. The other cases of (1) are 
similar. □

Note that what we are relying on in the proof above is the property of 
the group ?r that Btt splits stably as a wedge of spheres. (This also holds for 
many 3-manifold groups, so the same method will work for them as well.) 
Then for any bordism theory QB, generators of Q^Bir) may be obtained 
from products of generators of Of with a point, with a sphere, with a 
torus, or with a closed surface, and its easy to check when the positive 
scalar curvature condition holds.

The difference between cases (1) and (2) in the free abelian case is due 
to the fact that when W2(M) / 0, there are no obvious index-theoretic 
obstructions to positive scalar curvature, so we have to check for positive 
scalar curvature on manifolds in the same bordism class as Tn. This man
ifold does not admit positive scalar curvature, but it is not clear what 
happens when we replace it by a non-spin manifold in the same bordism 
class. A reasonable conjecture, supported by the results of [GL3], is that if 
wz^M) / 0 and ?r = Zk, then Mn admits a positive scalar curvature metric 
if and only if /*([M]) E Hn(BTv, Z) vanishes. Here [M] is the fundamental 
class of M, and as above, f is the classifying map for the universal covering.

7. Complete Manifolds

It is known that any non-compact manifold (of dimension > 1) ad
mits a Riemannian metric with positive sectional curvature [Gr, Theo
rem 4.5.1], hence certainly with positive scalar curvature. The interesting 
questions about positive scalar curvature on non-compact manifolds are 
therefore whether one can find a complete metric of positive scalar cur
vature (perhaps in a specified quasi-isometry class), and whether one can 
do this bounding the scalar curvature away from 0 and/or oo. The most 
important results on this problem to date may be found in [GL3], though 
much of the recent work on index theory for open manifolds, such as [Roel], 
[Roe2], and [Roe3], also has implications for this question.

An interesting test case for the problem is provided by manifolds of the 
form Xn x Rfc, where Xn is a closed manifold which does not admit a metric 
of positive scalar curvature. Obviously, R has no metrics of positive scalar 
curvature. It was observed in [GL3] that R2 has complete metrics of positive 
scalar curvature (such as the obvious metric on a paraboloid of revolution), 
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but no complete metrics with scalar curvature bounded below by a positive 
constant. (In dimension 2, scalar curvature is essentially the same as Ricci 
curvature, and by Myers’s Theorem, any complete manifold with uniformly 
positive Ricci curvature is compact.) However, Kfe has complete metrics of 
uniformly positive scalar curvature for fc > 3 (take the Riemannian product 
of the constant curvature metric on Sk~r with the usual metric on [0, oo), 
then glue on a suitable metric on Dk). A reasonable conjecture is that if 
Xn is a closed manifold which does not admit a metric of positive scalar 
curvature, then these results persist for Xn x ^, i.e., one has:

Conjecture 7.1. Let Xn be a closed manifold which does not admit a 
metric of positive scalar curvature. Then

(1) Xn x R does not admit a complete metric of positive scalar curva
ture; and

(2) Xn x R2 admits no complete metrics of uniformly positive scalar 
curvature.

This conjecture is augmented by the following facts:

Proposition 7.2. Let Xn be a closed manifold which does not admit a 
metric of positive scalar curvature. Then

(2') Xn x R2 admits complete metrics of (non-uniformly) positive scalar 
curvature; and

(3) Xn x Rfe admits complete metrics of uniformly positive scalar cur
vature when k>3.

Obviously, taking the product of any metric on X with a rescaled version 
of the above metrics on Rfc proves (3). (1) and (2) of the conjecture (with 
an additional technical condition for (2)) are proved in [GL3, Corollary 6.13 
and Theorem 7.5] when X is enlargeable. Various other cases of part (1) of 
the conjecture can be proved using the minimal surface technique. Suppose 
for simplicity that X is oriented. If Kn+1 = Xn x IR has a metric of posi
tive scalar curvature and there is a stable minimal hypersurface Mn in the 
homology class defined by [X] in Hn(Y; Z), then M is cobordant to X (for 
some t e R, X x {t} and M are disjoint and are the two boundary com
ponents of some “segment” in Y). By the basic minimal surface argument, 
M has a metric of positive scalar curvature, and under suitable conditions, 
the cobordism can be used to “propagate” positive scalar curvature to M 
via Theorem 3.3.

Some cases of (2') are proved in [GL3], and one can prove this in general 
by taking a warped product metric, using a suitable metric of positive 
scalar curvature on IR2 and function / : R2 —► IR+. More precisely, fix a 
metric on X and give IR2 the metric of a surface of revolution, described by 
rotating around the x-axis the graph (x, y) = (^(r), h(r)), r > 0, where for 
convenience p(O) = h(0) = 0, ^(0) = 1, (g')2 + (h')2 = 1, and h"(r) < 0 for 
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r > 0. Here r denotes the geodesic distance in the surface from the origin 
and the Gaussian curvature of the metric is given by K = —h"/h. We 
can adjust h so that K(0) is any desired positive constant and K decreases 
as O(r~2). Take f = r (smoothed out near r = 0). Then one can see 
(using the formula for the radial part of the Laplace-Beltrami operator) 
that IIV/||2//2 and Af/f both decay like a constant times r~2. If we give 
Xn x IR2 the warped product metric f2dx2 + ds2, where dx2 is a metric on 
X, then by [GL3, (7.35)], the scalar curvature of Xn x R2 is

«^+51)!<
f2 J2 J

All terms decay as O(r"2), and we can adjust the various parameters so 
that K is positive everywhere.

This leaves (2), which it seems ought to be approachable in the spin 
case by versions of non-compact index theory. Completeness of the metric 
implies that the Dirac operator D on X x JR2 is essentially self-adjoint [W], 
and the condition of uniformly positive scalar curvature will imply that D 
has a bounded inverse, hence that index invariants vanish.

The question of what non-compact manifolds admit complete metrics of 
positive scalar curvature is still far from being understood in more general 
situations, and to close, we shall content ourselves with quoting a few re
sults of Gromov and Lawson and of Roe. By [GL3, Theorems 6.13 and 
8.4], manifolds which admit complete hyperbolic metrics of finite volume, 
and 3-manifolds which contain incompressible surfaces, do not admit any 
complete metrics at all with positive scalar curvature. The class of open 
manifolds without complete metrics of uniformly positive scalar curvature 
is bigger, and includes open 3-manifolds containing a “small” circle [GL3, 
Theorem 8.7], one with infinite order in Hi and such that the normal circle 
also has infinite order in Hi. Finally, the index theory of Roe puts sub
stantial restrictions on when one can construct a metric of positive scalar 
curvature or uniformly positive scalar curvature in a given quasi-isometry 
(or “bornotopy”) class. By [Roel, Proposition 3.3], there is no complete 
metric of positive scalar curvature in the strict quasi-isometry class of an 
infinite amenable covering of a closed spin manifold with A ^ 0. By [Roe3, 
Proposition 6.14], if Mn is a complete spin manifold satisfying a condi
tion that roughly says that its metric end looks like Sn~1 (for instance, 
if M = Rn and M is in the same bornotopy class as standard Euclidean 
space), then the scalar curvature of M can’t be uniformly positive.
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